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STATISTICS IN TRANSITION new series and SURVEY METHODOLOGY 

Joint Issue: Small Area Estimation 2014 

Vol. 17, No. 1 pp. 1–2 

FROM  THE  EDITORS 

This issue is devoted entirely to selected papers presented at the international 

conference on Small Area Estimation − SAE 2014. The conference took place at 

the Economics University of Poznan, from the 3rd to the 5th of September 2014. 

A satellite event − a workshop devoted to small area estimation with R given by 

Professor Li-Chun Zhang from the University of Southampton and Statistics 

Norway − was organized on the eve of the conference (September 2, 2014). The 

main aim of the SAE 2014 Conference was to provide a forum for the current 

research on small area estimation and related fields. The conference focused on 

aspects of conceptual, methodological and practical achievements in small area 

estimation methods in recent years. The conference brought together specialists 

from universities working on small area estimation, practitioners working in 

National Statistical Offices and other research agencies, all over the world. The 

SAE 2014 Conference was organized as part of activities of the European 

Working Group on Small Area Estimation and was the next in the series of 

conferences which have so far been held in Jyväskylä, Pisa, Elche and Trier. 

The Programme Committee of the Conference was chaired by Professor 

Domingo Morales, Universidad Miguel Hernández de Elche. The Organizing 

Committee of the SAE 2014 Conference was chaired by Professor Marcin 

Szymkowiak, Poznan University of Economics. More details about these 

committees are available at this link: http://www.sae2014.ue.poznan.pl/index.html. 

Statistics in Transition has previously published seven issues that focused on 

SAE, starting with articles from the Warsaw International Conference held in 

1992 (Vol. 1, Number 6, 1994), and ending in 2005-6 with two issues  

(Vol. 7, No. 3, December 2005, and Vol. 7, No. 4, March 2006) with selected 

articles from The Conference held at the University of Jyväskylä, Finland, from 

27-31 August 2005. 

This time, in view of the large number of papers (15), the SAE 2014 

proceedings were split into two parts: the first one appeared in December 2015. 

This is the second part of this thematic issue. These proceedings mark a turning as 

they were co-edited by Professor Włodzimierz Okrasa, Editor of Statistics in 

Transition, and Dr. Michael Hidiroglou, Editor of Survey Methodology. This joint 

editorship is a first between our journals, and it was a pleasure and memorable 

experience for both editors to collaborate. 

These two issues represent a subset of the invited articles presented at the 

conference. They all went through a formal review process that was shared by 

four Guest Editors: Professor Risto Lehtonen (University of Helsinki), Finland, 
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Professor Ray Chambers (University of Wollongong), Australia, Dr. Graham 

Kalton (Westat), U.S.A., and Professor Malay Ghosh (University of Florida), 

U.S.A. Both editors, Professor Okrasa and Dr. Hidiroglou, are very grateful for 

the excellent collaboration and efficient work of the Guest Editors. Our 

appreciation goes also to authors, especially those who had directly collaborated 

with us or with our editorial offices on adjusting their papers to our journals' 

technical requirements. 

It is with great satisfaction that we, as editors, provide the reader with such a 

unique collection of papers representing not only the state-of-the-art variety of 

small area estimation topics, but also a great deal of thoughtful suggestion for 

exploration in further research. 

 

Michael Hidiroglou 

Wlodzimierz Okrasa 

Editors 
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STATISTICS IN TRANSITION new series and SURVEY METHODOLOGY 

Joint Issue: Small Area Estimation 2014 

Vol. 17, No. 1, pp. 3–6 

FROM  THE  GUEST  EDITORS  (PART 2) 

The second part of this Joint Issue of Statistics in Transition and Survey 

Methodology includes seven articles. These two issues have been split according 

to which guest editors have been looking after the articles. They are not 

necessarily sequenced according to the themes that appeared in the original 

Conference programme. 

The first paper, by Erciulescu and Fuller, presents a small area procedure 

where the mean and variance of an auxiliary variable are subject to estimation 

error. They consider fixed and random specifications for these auxiliary variables. 

Their study was motivated by a situation where the sample used for small area 

estimation was a subsample of a larger survey. The larger survey furnished 

estimates of the distribution of the auxiliary variables. They demonstrate that 

efficiency gains associated with the random specification for the auxiliary 

variable measured with an error can be obtained. They propose a parametric 

bootstrap procedure for the mean squared error of the predictor based on a logit 

model. The resulting bootstrap procedure has a smaller bootstrap error than a 

classical double bootstrap procedure with the same number of samples. 

The second paper, by Münnich, Burgard, Gabler, Ganninger and Kolb, 

develops a sampling design that can support accurate estimation for the 2011 

German Census. In contrast to carrying out a classical census, a register-assisted 

census, using population register data and an additional sample, was 

implemented. The main objective of the census was to produce the total 

population counts at fairly low levels of geography.  Ralf Münnich et al. provide 

an overview of how the sampling design recommendations were set up to fulfill 

legal requirements and to guarantee an optimal, yet flexible, source of 

information. Small area methods, as well as traditional methods, were used to 

produce these counts. Empirical results of the small area estimation are presented. 

The next three papers present developments in small area estimation 

methodology and practical application in various fields of empirical research and 

statistics production, including poverty research and fisheries statistics. The first 

paper, by Guadarrama, Molina and J. N. K. Rao, provides a review on methods 

for the estimation of poverty indicators for small areas, including design-based 

direct estimation and a number of model-based small area estimation methods: the 

Fay-Herriot area level model, the World Bank poverty mapping method (the ELL 

method) and three Bayesian variants previously published by the authors. These 

are the empirical best/Bayes (EB) and hierarchical Bayes (HB) methods and 

a Census EB method providing an extension of the EB method. While the  
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Fay-Herriot method employs area-level data, the other methods require unit-level 

auxiliary information. The ELL, EB, Census EB and HB methods rely on 

statistical data infrastructures where access to unit-level records of population 

units taken for example from administrative registers and population censuses is 

available for research and statistics production. This option is becoming 

frequently met in an increasing number of countries and much of current small 

area research is conducted under this assumption. The list of advantages and 

disadvantages, reported for each of the methods, appears helpful for practitioners 

facing the challenge of choosing a small area method for a particular estimation 

task. Statistical properties (bias and accuracy) of methods are assessed empirically 

by model-based simulation experiments with unit-level synthetic data following a 

nested error model, throwing further light on the methodological summaries of 

the methods. Extensive simulation scenarios of varying complexity include 

informative sampling and a nested error model with outliers; these scenarios in 

particular are important for practical purposes. For practical application, it is 

important that also situations are considered where some of the underlying 

assumptions of the methods do not hold, which is often the case in practice. The 

conclusions drawn by the authors on the relative performance of the methods are 

useful for researchers and practitioners.  

Because of its applicability in various data infrastructures, the Fay-Herriot 

model has been widely used in small area estimation purposes all over the world 

and new developments are often needed to extend the method for practical 

situations at hand. A robust hierarchical Bayesian approach for the Fay-Herriot 

area-level model is presented in the second paper, written by Chakraborty, Datta 

and Mandal. The starting point is the authors' observation on a possible poor 

performance of the standard Fay-Herriot area-level model in the presence of 

outliers. The new method is aimed for cases where extreme values are met for 

some of the random effects of small area means, causing problems in the standard 

Fay-Herriot procedure under normality assumptions of the random effects. The 

authors propose a two-component normal mixture model, which is based on 

noninformative priors on the model variance parameters, regression coefficients 

and the mixing probability. The method is aimed as an alternative to a scale 

mixture of normal distributions with known mixing distribution for the random 

effects. The authors apply their method to real data of US Census Bureau for 

poverty rate estimation at county level. The results indicate that probabilities of 

having large random effects are expected to be low for most areas but can be large 

for some areas, thus calling for attention to handle the possible heterogeneity of 

the data. Simulation studies based on artificially generated data are conducted to 

assess the performance of the proposed method against the standard Fay-Herriot 

model. In the first set of experiments, the authors verify the robustness of the 

proposed method to outliers in the cases considered. In further simulations, the 

authors show that their method tends to perform better than the Fay-Herriot 

method when the possibility of presence of outliers is high, and performs 

similarly in situations where outliers are not expected. In their concluding notes 
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the authors provide a useful discussion on the possible causes of exceptionally 

large random effects for certain areas, calling for a careful specification of the 

linking model and the choice of the explanatory (auxiliary) variables. 

The third paper, by Hernandez-Stumpfhauser, Breidt and Opsomer, provides 

a refinement of the Fay-Herriot approach for a particular small area estimation 

problem. The authors consider a practical problem of developing a new weighting 

procedure for a regular fisheries survey in the United States on recreational 

fishing in saltwater. For the estimation of the recreational catch, fishing catch per 

trip is estimated from one survey and the number of fishing trips from another 

survey. Data from these two surveys are combined to estimate recreational fishing 

catch in 17 US states. For weighting procedure, estimates are needed for the 

fraction of fishermen who leave the fishing site during a prespecified time interval 

on a selected day. The distribution of daily departure times is needed within 

spatio-temporal domains subdivided by mode of fishing. Direct estimates could 

be obtained but they are not sufficient because of a large number of estimation 

domains, causing very small (even zero) domain sample sizes. The authors 

develop a small area estimation solution based on the Fay-Herriot approach. More 

specifically, the authors show that with a certain hierarchical model formulation 

that is slightly more complex as the standard mixed model, fast and accurate 

model selection procedure based on variational/Laplace approximation to the 

posterior distribution can be implemented for the particular estimation problem 

considered. Even if the underlying linear mixed model can be complex involving 

fixed and random effects for the states, waves and fishing modes and interaction 

terms, the method can serve as a cost-effective alternative to the computationally 

more demanding MCMC sampler. By empirical comparison of MCMC and the 

proposed variational/Laplace approaches using real data, the authors show that the 

results are essentially identical, thus motivating the use of the method in practice.  

The production of small area statistics by national statistical agencies and 

international statistical institutes is becoming more and more important for 

societal planning and evaluation and the allocation of public funds to regional 

areas and other population subgroups. In the next paper, Kordos presents a 

personal view on the development of certain aspects of small area estimation 

methodology and practice in the context of official statistics. The author first 

summarizes the main approaches in small area estimation with some historical 

remarks. He continues by discussing the important issue of the use of 

administrative records in official statistics production and as auxiliary information 

in the construction of estimators for various regional indicators. The author 

presents a summary of international conferences on small area estimation 

organized in past years, covering a period from 1985. Further, he presents 

a review of selected international small area estimation programs and research 

projects on small area estimation. A special property of these research activities is 

that they are conducted in cooperation with research communities on small area 

estimation and actors whose responsibility is in the production of official small 
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area statistics. The interaction has proven fruitful in motivating ongoing research 

and development in small area estimation methodology and for boosting the 

implementation of methods in regular official statistics production. This aspect 

might well be taken as the main message of the paper by Kordos.  

In many national statistical institutes, the design-based approach has offered 

the prevailing paradigm in official statistics production for decades. Good reasons 

are the ability of the approach to provide estimates having favorable statistical 

properties such as design-unbiasedness, which is often appreciated by the clients, 

and the availability of powerful statistical procedures and tools that use 

effectively the auxiliary information supplied in various forms. Calibration 

techniques and generalized regression estimation are examples of such methods. 

While relative standard errors of design-based estimates can be sufficiently small 

for population domains whose sample size is large, this is not necessarily the case 

for small domains. It is in this field of action where model-based small area 

estimation is challenging the design-based approach. In the final paper,  

Hidiroglou and Estevao present an empirical assessment of selected design-based 

methods against some existing model-based small area estimation methods, 

considered at Statistic Canada. Traditional design-based estimators include the 

Horvitz-Thompson estimator, two variants of calibration estimators and 

a modified regression estimator. A synthetic estimator and the standard EBLUP 

and its variant called pseudo-EBLUP represent model-based methods. The 

relative performance of the methods is assessed in design-based simulation 

experiments, where in addition to "ideal" conditions also misspecified models are 

considered. The relative performance of the methods differs depending on 

whether the model holds or not. Of the traditional design-based estimators, the 

domain-specific calibration estimator and the modified regression estimator 

indicate the best efficiency. The model-based small area estimators tend to 

outperform the design-based methods in efficiency, especially for small domains. 

As expected, the model-based methods can suffer from large design bias in cases 

where the model is misspecified. 

Several persons (in addition to the Editor and Guest Editors) have served as 

reviewers of papers published in this thematic issue of the journal. We 

acknowledge the efforts of F. Jay Breidt, Isabel Molina, Domingo Morales, Ari 

Veijanen, Mamadou Diallo and Jon Rao: their encouraging and productive 

comments directly contributed to the quality of the papers. 

 

Risto Lehtonen and Graham Kalton 

Guest Editors 
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STATISTICS IN TRANSITION new series and SURVEY METHODOLOGY 

Joint Issue: Small Area Estimation 2014 

Vol. 17, No. 1, pp. 7−8 

SUBMISSION INFORMATION FOR AUTHORS 

Statistics in Transition new series (SiT) is an international journal published 

jointly by the Polish Statistical Association (PTS) and the Central Statistical 

Office of Poland, on a quarterly basis (during 1993–2006 it was issued twice and 

since 2006 three times a year). Also, it has extended its scope of interest beyond 

its originally primary focus on statistical issues pertinent to transition from 

centrally planned to a market-oriented economy through embracing questions 

related to systemic transformations of and within the national statistical systems, 

world-wide.  

The SiT-ns seeks contributors that address the full range of problems involved 

in data production, data dissemination and utilization, providing international 

community of statisticians and users – including researchers, teachers, policy 

makers and the general public – with a platform for exchange of ideas and for 

sharing best practices in all areas of the development of statistics. 

Accordingly, articles dealing with any topics of statistics and its advancement 

– as either a scientific domain (new research and data analysis methods) or as a 

domain of informational infrastructure of the economy, society and the state – are 

appropriate for Statistics in Transition new series. 

Demonstration of the role played by statistical research and data in economic 

growth and social progress (both locally and globally), including better-informed 

decisions and greater participation of citizens, are of particular interest. 

Each paper submitted by prospective authors are peer reviewed by 

internationally recognized experts, who are guided in their decisions about the 

publication by criteria of originality and overall quality, including its content and 

form, and of potential interest to readers (esp. professionals). 

Manuscript should be submitted electronically to the Editor: 

sit@stat.gov.pl.,  

GUS / Central Statistical Office  

Al. Niepodległości 208, R. 287, 00-925 Warsaw, Poland 

It is assumed, that the submitted manuscript has not been published previously 

and that it is not under review elsewhere. It should include an abstract (of not 

more than 1600 characters, including spaces). Inquiries concerning the submitted 

manuscript, its current status etc., should be directed to the Editor by email, 

address above, or w.okrasa@stat.gov.pl. 

For other aspects of editorial policies and procedures see the SiT Guidelines 

on its Web site: http://stat.gov.pl/en/sit-en/guidelines-for-authors/ 

mailto:@stat.gov.pl
mailto:w.okrasa@stat.gov.pl
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Survey Methodology is an internationally acclaimed scientific journal that is 

published twice a year. For over 40 years, it has been a source of key information 

on survey methods for statisticians. Survey Methodology draws on the expertise 

of statisticians and experts from Canada and around the world. It provides 

reliable, complete and authoritative information. 

Survey Methodology publishes articles dealing with various aspects of 

statistical development relevant to a statistical agency, such as design issues in the 

context of practical constraints, use of different data sources and collection 

techniques, total survey error, survey evaluation, research in survey methodology, 

time series analysis, seasonal adjustment, demographic studies, data integration, 

estimation and data analysis methods, and general survey systems development. 

The emphasis is placed on the development and evaluation of specific 

methodologies as applied to data collection or the data themselves. All papers will 

be refereed. However, the authors retain full responsibility for the contents of 

their papers and opinions expressed are not necessarily those of the Editorial 

Board or of Statistics Canada. 

Survey Methodology is published twice a year in electronic format. Submitted 

articles are peer reviewed by experts in the particular area that the author(s) 

address.  

Authors are invited to submit their articles in English or French in electronic 

form, preferably in Word to the Editor: 

statcan.smj-rte.statcan@canada.ca, 

Statistics Canada, 150 Tunney’s Pasture Driveway,  

Ottawa, Ontario, Canada, K1A 0T6 

For formatting instructions, please see the guidelines provided in the journal 

and on the web site (www.statcan.gc.ca/SurveyMethodology). 

mailto:statcan.smj-rte.statcan@canada.ca
http://www.statcan.gc.ca/SurveyMethodology
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STATISTICS IN TRANSITION new series and SURVEY METHODOLOGY 

Joint Issue: Small Area Estimation 2014 

Vol. 17, No. 1, pp. 9–24 

SMALL AREA PREDICTION UNDER ALTERNATIVE 

MODEL SPECIFICATIONS 

 Andreea L. Erciulescu1, Wayne A. Fuller2  

ABSTRACT 

Construction of small area predictors and estimation of the prediction mean 

squared error, given different types of auxiliary information are illustrated for a 

unit level model. Of interest are situations where the mean and variance of an 

auxiliary variable are subject to estimation error. Fixed and random specifications 

for the auxiliary variables are considered. The efficiency gains associated with the 

random specification for the auxiliary variable measured with error are 

demonstrated. A parametric bootstrap procedure is proposed for the mean squared 

error of the predictor based on a logit model. The proposed bootstrap procedure 

has smaller bootstrap error than a classical double bootstrap procedure with the 

same number of samples. 

Key words: unit level model, parametric bootstrap, double bootstrap, 

measurement error, auxiliary information.   

1. Introduction 

Small area estimation procedures use models and auxiliary data to construct 

estimates for subpopulations that are more efficient than the direct estimators for 

those subpopulations. Modeling provides potential for gains by postulating a 

distribution for the unknown parameters. The presence of variables that are 

correlated with the variable of interest provides potential for efficiency gains 

when there is knowledge about the distribution of those variables. In most of the 

small area literature the small area population means of the auxiliary variables are 

assumed to be known. We are interested in the situation where only estimates of 

the parameters of the distribution of the auxiliary variables are available. Our 

study was motivated by a situation where the sample used for small area 

estimation was a subsample of a larger survey. The larger survey furnished 

estimates of the distribution of the auxiliary variables. 

                                                           
1 National Institute of Statistical Sciences and USDA NASS, 1400 Independence Ave. SW, Room 

6040 F, Washington, DC 20250. 
2 Iowa State University, 1214 Department of Statistics, Ames, IA 50010. 
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A number of papers consider measurement error in the auxiliary variables 

used in the linear regression model. See Fuller and Harter (1987), Ghosh, Sinha 

and Kim (2006), Ghosh and Sinha (2008), Torabi, Datta and Rao (2009), Ybarra 

and Lohr (2008) and Datta, Rao and Torabi (2010). In contrast, we study unit 

level mixed models where the observed explanatory variables are measured 

without error, but the parameters of the distribution of the auxiliary variables are 

known subject to estimation error. We consider auxiliary information obtained 

from a sample, including the limit case of a complete sample. 

Because there are no closed-form estimators for the prediction mean squared 

error (MSE) for most nonlinear models, bootstrap methods have been suggested. 

See Hall and Maiti (2006) and Pfeffermann and Correa (2012). We propose 

parametric bootstrap procedures based on the work of Davidson and MacKinnon 

(2007).  

This paper is organized in sections. In Section 2.2 we present predictors of 

small area means assuming a unit level generalized linear mixed model, with 

alternative specifications for the auxiliary information. In Section 2.4 we describe 

parametric double bootstrap procedures for MSE estimation. Section 3.2 contains 

simulation results comparing the prediction MSEs for the logit model under 

alternative model specifications and alternative types of data for the auxiliary 

variables. Simulation comparisons of alternative bootstrap prediction MSE 

estimators are given in Section 3.3. 

2. Unit Level Nonlinear Models 

2.1. Introduction 

The unit level generalized linear mixed model considered in this study is 

𝐸[𝑦𝑖𝑗|𝒙𝑖𝑗, 𝑏𝑖] = 𝑔(𝒙𝑖𝑗𝜷 , 𝑏𝑖), (1) 

 𝒙𝑖𝑗 =  𝝁 𝑥𝑖 +  𝜺 𝑖𝑗 , (2) 

𝑖 = 1, . . . , 𝑚, where 𝑚 is the number of areas, 𝑗 is the index for units in the area, 𝜷 

is a vector of coefficients,  𝝁 𝑥𝑖 is the area mean of the auxiliary variable, and 𝑏𝑖 is 

the area random effect. It is assumed that the 𝑏𝑖 are independent and identically 

distributed, with a density 𝑓𝑏 with mean 0 and variance 𝜎𝑏
2, mutually independent 

of 휀𝑖𝑗, where the 휀𝑖𝑗 are independent and identically distributed random variables 

with a density 𝑓  with mean 0 and variance 𝜎2. The vector (𝑦𝑖𝑗 , 𝒙𝑖𝑗), 𝑖 =

1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑛𝑖 is observed.  

Additional information on the distribution of 𝒙𝑖𝑗 may be available. 

Possibilities include a second sample of 𝒙𝑖𝑗 observations, or an estimator of  𝝁 𝑥𝑖, 
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or complete knowledge of the distribution function. The area means of 𝒙 can be 

treated as fixed or as random variables. If random, we assume  

 𝝁 𝑥𝑖 =  𝝁 𝑥 +  𝜹 𝑖 , (3) 

where 𝛿𝑖 are independent and identically distributed, with a density 𝑓𝛿 with mean 

0 and variance 𝜎𝛿
2. Assume 𝛿𝑖 are independent of 𝑏𝑘, 𝑒𝑖𝑗 , 휀𝑟𝑡, for all 𝑖, 𝑘, 𝑟 and 𝑡, 

where 𝑒𝑖𝑗 = 𝑦𝑖𝑗 − 𝑔(𝒙𝑖𝑗𝜷 , 𝑏𝑖). 

Of interest is the 𝑖𝑡ℎ small area mean of 𝒚  

𝜃𝑖 = ∫ 𝑔(𝒙𝜷 , 𝑏𝑖)𝑑𝐹𝒙𝑖
(𝒙), (4) 

where 𝐹𝒙𝑖
(𝒙) is the distribution of 𝒙 in area 𝑖. Also of interest is the prediction 

mean squared error  

𝛼𝑖 = 𝐸(𝜃𝑖 − 𝜃𝑖)2, (5) 

where 𝜃𝑖 is the predictor. We assume throughout that the area population is large 

so that we need not consider finite population corrections.  

The nature of the estimation-prediction problem is determined by the 

distributional properties of the vector (𝑏𝑖, 𝜹 𝑖, 𝜺 𝑖𝑗). The nonlinear model is more 

complicated than the linear model for several reasons. First, parameter estimation 

is more difficult because no closed form estimator exists. Likewise, closed form 

estimators of the mean squared error do not exist. Lastly, the small area mean of 

the auxiliary variable is not sufficient for the estimation of 𝜃𝑖. 

As an example of model (1), consider a Bernoulli response variable 𝒚, with 

realizations 𝑦𝑖𝑗 for 𝑚 different areas and 𝑛𝑖 different units within each area. To 

simplify the presentation, we consider scalar 𝑥𝑖𝑗 for the remainder of our 

discussion. Let 𝑥𝑖𝑗 be independent and identically distributed, following a 

distribution 𝐹𝒙𝑖
. Let the expected value of 𝑦𝑖𝑗 given (𝒙𝑖𝑗 , 𝑏𝑖) be  

𝑔(𝒙𝑖𝑗𝜷 , 𝑏𝑖) =
𝑒𝑥𝑝(𝒙𝑖𝑗 𝜷 +𝑏𝑖)

1+𝑒𝑥𝑝(𝒙𝑖𝑗 𝜷 +𝑏𝑖)
, (6) 

where 𝒙𝑖𝑗 = (1, 𝑥𝑖𝑗) and  𝜷 = (𝛽0, 𝛽1)′. The model is the generalized linear 

mixed model with logit link. 
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2.2. Predictors of 𝜽𝒊 

 We present predictors of 𝜃𝑖 for model (6), under alternative specifications for 

𝒙𝒊𝒋 and for different levels of auxiliary information, given known parameters 

(𝜎𝑏
2, 𝜎2, 𝜎𝛿

2, 𝜷 , 𝜇𝑥). 

2.2.1. Known Covariate Distribution 

 Let the distribution of 𝑥𝑖𝑗 be known and let (𝒙𝑖, 𝒚𝑖) be a random sample of 

(𝑥𝑖𝑗 , 𝑦𝑖𝑗), where 𝒙𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑛𝑖
), 𝒚𝑖 = (𝑦𝑖,1, 𝑦𝑖,2, . . . , 𝑦𝑖,𝑛𝑖

). Then, given 

known parameters, the minimum mean squared error (MMSE) predictor of the 𝑖𝑡ℎ 

small area mean of 𝒚 is  

𝜃𝑖 = 𝐸[𝜃𝑖(𝑏)|(𝒙𝑖, 𝒚𝑖)]

=
∫𝑏

𝜃𝑖(𝑏) ∏
𝑛𝑖
𝑡=1 𝑓(𝑦𝑖𝑡|𝑥𝑖𝑡,𝑏)𝑑𝐹𝑏(𝑏)

∫𝑏
∏

𝑛𝑖
𝑡=1 𝑓(𝑦𝑖𝑡|𝑥𝑖𝑡,𝑏)𝑑𝐹𝑏(𝑏)

,

 (7) 

 where  

𝜃𝑖(𝑏) = ∫ 𝑔(𝒙𝜷 , 𝑏)𝑑𝐹𝒙𝑖
(𝒙). 

In some finite population situations, the entire finite population of 𝒙 values 

may be known and the integral expression for 𝜃𝑖(𝑏) in (7) is the sum over the 

population. In the simulations for this model we assume 𝑥𝑖𝑗~𝑁𝐼(𝜇𝑥𝑖, 𝜎2) with 𝜇𝑥𝑖 

known and 𝜎2 known. 

2.2.2. Sample Estimated Covariate Distribution 

Let an estimator of the distribution of 𝑥𝑖𝑗 be given by a sample (𝑥𝑖𝑗, 𝑤𝑖𝑗), 𝑗 =

1, . . . , 𝑟𝑖, where 𝑤𝑖𝑗 are weights such that the sample cumulative distribution 

function (CDF) is unbiased for the population CDF. Then, given known (𝜎𝑏
2, 𝜷 ), 

the predictor of the 𝑖𝑡ℎ small area mean of 𝒚 is  

𝜃𝑖 = 𝐸[𝜃𝑖(𝑏)|(𝒙𝑖, 𝒚𝑖)]

=
∫𝑏

𝜃𝑖(𝑏) ∏
𝑛𝑖
𝑡=1 𝑓(𝑦𝑖𝑡|𝑥𝑖𝑡,𝑏)𝑑𝐹𝑏(𝑏)

∫𝑏
∏

𝑛𝑖
𝑡=1 𝑓(𝑦𝑖𝑡|𝑥𝑖𝑡,𝑏)𝑑𝐹𝑏(𝑏)

,
 (8) 

 where  

 𝜃𝑖(𝑏) = ∑𝑟𝑖
𝑗=1 𝑤𝑖𝑗𝑔(𝒙𝒊𝒋𝜷 , 𝑏). 

The sample used to estimate the CDF could be the original sample with 𝑟𝑖 =
𝑛𝑖 or the estimation sample could be the original sample augmented by an 
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additional probability sample of size 𝑛𝑖
′ selected from the area population. See 

Ghosh et al. (2009) for an example using the sample CDF. 

2.2.3. Unknown Random Covariate Mean 

Assume the form of the distribution of 𝒙 for area 𝑖 is known, with unknown 

parameters (𝜇𝑥𝑖, 𝜎2). Assume 𝜇𝑥𝑖 satisfies (3). Then, given known 

(𝜎𝑏
2, 𝜎2, 𝜎𝛿

2, 𝜷 , 𝜇𝑥), the MMSE predictor of the 𝑖𝑡ℎ small area mean of 𝒚 is  

𝜃𝑖 = 𝐸[𝜃𝑖(𝑏, 𝛿)|(𝒙𝑖, 𝒚𝑖)]

=
∫𝑏 ∫𝛿

𝜃𝑖(𝑏,𝛿) ∏
𝑛𝑖
𝑡=1 𝑓(𝑦𝑖𝑡|𝑥𝑖𝑡,𝑏)𝑓(𝑥𝑖𝑡|𝛿)𝑑𝐹𝛿(𝛿)𝑑𝐹𝑏(𝑏)

∫𝑏 ∫𝛿
∏

𝑛𝑖
𝑡=1 𝑓(𝑦𝑖𝑡|𝑥𝑖𝑡,𝑏)𝑓(𝑥𝑖𝑡|𝛿)𝑑𝐹𝛿(𝛿)𝑑𝐹𝑏(𝑏)

,
               (9) 

 where  

𝜃𝑖(𝑏, 𝛿) = ∫ 𝑔[(𝜇𝑥 + 𝛿 + 𝜺) 𝜷 , 𝑏]𝑑𝐹 𝜺 𝑖(𝜺). 

In the simulations we assume 𝑥𝑖𝑗~𝑁𝐼(𝜇𝑥𝑖, 𝜎2) and 𝛿𝑖~𝑁𝐼(0, 𝜎𝛿
2). 

2.2.4. Unknown Random Covariate Mean, Additional Information �̃�𝒊 

Let the random model assumptions of Section 2.2.3 hold. Let a vector of 𝑛𝑖
′ 

observations on 𝑥𝑖𝑗, denoted by �̃�𝒊, be available. Then, given known 

(𝜎𝑏
2, 𝜎2, 𝜎𝛿

2, 𝜷 , 𝜇𝑥), the MMSE predictor of the 𝑖𝑡ℎ small area mean of 𝒚 is  

 

𝜃𝑖 = 𝐸[𝜃𝑖(𝑏, 𝛿))|(𝒙𝑖, 𝒚𝑖, �̃�𝒊)],

=
∫𝑏 ∫𝛿

𝜃𝑖(𝑏,𝛿) ∏
𝑛𝑖
𝑡=1 𝑓(𝑦𝑖𝑡|𝑥𝑖𝑡,𝑏)𝑓(𝑥𝑖𝑡|𝛿) ∏

𝑛𝑖
′

𝑡′=1
𝑓(�̃�

𝑖𝑡′|𝛿)𝑑𝐹𝛿(𝛿)𝑑𝐹𝑏(𝑏)

∫𝑏 ∫𝛿
∏

𝑛𝑖
𝑡=1 𝑓(𝑦𝑖𝑡|𝑥𝑖𝑡,𝑏)𝑓(𝑥𝑖𝑡|𝛿) ∏

𝑛𝑖
′

𝑡′=1
𝑓(�̃�𝑖𝑡′|𝛿)𝑑𝐹𝛿(𝛿)𝑑𝐹𝑏(𝑏)

,
 

where  

 𝜃𝑖(𝑏, 𝛿) = ∫ 𝑔[(𝜇𝑥 + 𝛿 + 𝜺)𝜷 , 𝑏] 𝑑𝐹 𝜺 𝑖(𝜺). 

In the simulations we assume �̃�𝑖𝑗′~𝑁𝐼(𝜇𝑥𝑖, 𝜎2), so �̃�𝑥𝑖 = (𝑛𝑖
′)−1 ∑

𝑛𝑖
′

𝑗′=1
�̃�𝑖𝑗′  is 

a sufficient statistic for 𝜇𝑥𝑖 and the predictor simplifies to  

𝜃𝑖 =
∫𝑏 ∫𝛿

𝜃𝑖(𝑏,𝛿) ∏
𝑛𝑖
𝑡=1 𝑓(𝑦𝑖𝑡|𝑥𝑖𝑡,𝑏)𝑓(𝑥𝑖𝑡|𝛿)𝑓(�̃�𝑥𝑖|𝛿)𝑑𝐹𝛿(𝛿)𝑑𝐹𝑏(𝑏)

∫𝑏 ∫𝛿
∏

𝑛𝑖
𝑡=1 𝑓(𝑦𝑖𝑡|𝑥𝑖𝑡,𝑏)𝑓(𝑥𝑖𝑡|𝛿)𝑓(�̃�𝑥𝑖|𝛿)𝑑𝐹𝛿(𝛿)𝑑𝐹𝑏(𝑏)

. (10) 



14                                                 A. L. Erciulescu, W. A. Fuller: Small area prediction … 

 

 

2.3. Estimation 

In practice, the vector of parameters 𝝍 = (𝜎𝑏
2, 𝜎2, 𝜎𝛿

2, 𝜷 , 𝜇𝑥) is not known 

and needs to be estimated. Consider the model specified by (1), (2), (3), (6), with 

additional information �̃�𝒊 available, as described in Section 2.2.4. The likelihood 

is  

 𝐿(𝜎𝑏
2, 𝜎2, 𝜎𝛿

2, 𝜷 , 𝜇𝑥|𝒙, 𝒚, �̃�) = ∏𝑚
𝑖=1 𝐿𝑖 , 

where  

 

𝐿𝑖 = ∫𝑏 ∫𝛿
∏

𝑛𝑖,𝑛𝑖
′

𝑗=1,𝑗′=1
𝑓(𝑦𝑖𝑗 , 𝑥𝑖𝑗 , �̃�𝑖𝑗′|𝑏, 𝛿, 𝜓)𝑓(𝑏|𝜓)𝑓(𝛿|𝜓)𝑑𝛿𝑑𝑏

= ∫𝑏
∏𝑛𝑖

𝑗=1 𝑓(𝑦𝑖𝑗|𝑏, 𝑥𝑖𝑗, 𝛽 )𝑓(𝑏|𝜎𝑏
2)𝑑𝑏 ∫𝛿

∏
𝑛𝑖+𝑛𝑖

′

𝑗=1 𝑓(𝑥𝑖𝑗
∗ |𝛿, 𝜇𝑥 , 𝜎2)𝑓(𝛿|𝜎𝛿

2)𝑑𝛿,
 

and 𝒙∗ = (𝒙, �̃�) is the vector of all available auxiliary information.  

Notice that the likelihood 𝐿(𝜎𝑏
2, 𝜎2, 𝜎𝛿

2, 𝜷 , 𝜇𝑥|𝒙, 𝒚, �̃�) factors into 

𝐿(𝜎𝑏
2, 𝜷 |𝒚, 𝒙) and 𝐿(𝜎2, 𝜎𝛿

2, 𝜇𝑥|𝒙, �̃�). Hence, the parameters (𝜎2, 𝜎𝛿
2, 𝜇𝑥) can be 

estimated separately from the estimation of the parameters (𝜎𝑏
2, 𝜷 ). Estimation of 

(𝜎2, 𝜎𝛿
2, 𝜇𝑥) can be based on maximizing the likelihood for the linear mixed 

model specified in (2) and (3), with additional information �̃�𝒊 available.  

Numerical integration methods are required for construction of estimates and 

predictions. 

2.4. Bootstrap MSE Estimation 

In this section we consider estimation of the MSE of 𝜃𝑖 as a predictor of 𝜃𝑖. 

Let  𝝍  be the parameter that defines the distribution of the sample observations, 

and let  𝝍 ̂ be an estimator of  𝝍 . Let  𝜶  be a vector of parameters of interest and 

let  𝜶 ∗ be a parametric bootstrap (simulation) estimator of  𝜶 . For the models 

considered in Section 2.2, let 𝛼𝑖 be the MSE of the prediction error for area 𝑖, as 

defined in (5). For the nonlinear small area model with known distribution for 𝑥𝑖𝑗, 

the vector of parameters is  𝝍 = (𝜎𝑏
2, 𝜷 ). For the nonlinear small area models 

with unknown random 𝜇𝑥𝑖, the vector of parameters is  𝝍 = (𝜎𝑏
2, 𝜷 , 𝜎2, 𝜇𝑥 , 𝜎𝛿

2). 

Because there is no closed form expression for the prediction MSE given in (5), 

we consider bootstrap MSE estimation.  

A sample generated with  𝝍  and random number seed 𝑟 is said to be created 

with data generator ( 𝝍 , 𝑟), denoted 𝐷𝐺( 𝝍 , 𝑟). Let 𝐵1 bootstrap samples be 

generated using random number seeds 𝑟1,1, 𝑟1,2, . . . , 𝑟1,𝐵1
. Let  𝝍 𝑘

∗  be the estimator 

of  𝝍  from the 𝑘th bootstrap sample generated using 𝐷𝐺(  𝝍 ̂ , 𝑟1,𝑘). The 

bootstrap estimator of prediction MSE for area 𝑖 is  

�̂�𝑖
∗ = 𝐵1

−1 ∑𝐵1
𝑘=1 (𝜃𝑖,𝑘

∗ − 𝜃𝑖,𝑘
∗ )2 =: 𝐵1

−1 ∑𝐵1
𝑘=1 𝛼𝑖,𝑘

∗ = �̅�𝑖
∗, (11) 
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 where 𝜃𝑖,𝑘
∗  is the true small area mean generated for the 𝑘th bootstrap sample, 𝜃𝑖,𝑘

∗  

is the sample predictor of 𝜃𝑖,𝑘
∗  and 𝛼𝑖,𝑘

∗  is the prediction squared error for the 𝑘th 

bootstrap sample. The estimator (11) is called the level-one bootstrap estimator.  

In the double bootstrap, a sample estimator, denoted by 𝛼𝑖
∗∗, is generated 

using  𝝍 ∗ from the level-one generated sample. Typically a large number of 𝛼𝑖
∗∗ 

is generated for each 𝛼𝑖
∗ and the bias adjusted estimator is  

�̃�𝑖
∗∗ = 𝐵1

−1 ∑𝐵1
𝑘=1 2𝛼𝑖,𝑘

∗ − 𝐵1
−1𝐵2

−1 ∑𝐵1
𝑘=1 ∑𝐵2

𝑡=1 𝛼𝑖,𝑘,𝑡
∗∗ . (12) 

 where 𝛼𝑖,𝑘,𝑡
∗∗  is generated using 𝐷𝐺( 𝝍 𝑘

∗ , 𝑟2,𝑘,𝑡), 𝐵1 is the number of level-one 

bootstrap samples, 𝐵2 is the number of level-two bootstrap samples per level-one 

sample, and the 𝑟2,𝑘,𝑡, 𝑘 = 1,2, . . . , 𝐵1, 𝑡 = 1,2, . . . , 𝐵2, are independent random 

numbers, independent of 𝑟1,𝑘.  

We use a double bootstrap estimator based on the work of Davidson and 

MacKinnon (2007) who give a fast double bootstrap procedure for bootstrap 

testing. See also Giacomini, Politis and White (2013). In the fast double 

bootstrap, a single 𝛼𝑖
∗∗ is generated for each 𝛼𝑖

∗. Let 𝑟2,1, 𝑟2,2, . . . , 𝑟2,𝐵1
 be a second 

independent sequence of random numbers. Given the sequence of random 

numbers, define 𝛼𝑖,𝑘
∗∗  to be calculated from data generated with 𝐷𝐺( 𝝍 𝑘

∗ , 𝑟2,𝑘). 

The (classic) double bootstrap estimator used in this study is  

�̃�𝑖,𝐶
∗∗ = 𝐵1

−1 ∑𝐵1
𝑘=1 (2𝛼𝑖,𝑘

∗ − 𝛼𝑖,𝑘
∗∗ ) = 2�̅�𝑖

∗ − �̅�𝑖
∗∗. (13) 

To construct an even more efficient bootstrap estimator, define 𝛼𝑖,𝑘,2
∗  to be 

calculated from data generated with 𝐷𝐺(  𝝍 ̂ , 𝑟2,𝑘). Then a bias adjusted (double 

bootstrap) estimator is  

�̂�𝑖
∗∗ = 𝐵1

−1 ∑𝐵1
𝑘=1 (𝛼𝑖,𝑘

∗ + 𝛼𝑖,𝑘,2
∗ − 𝛼𝑖,𝑘

∗∗ ), (14) 

 where the quantity 𝛼𝑖,𝑘
∗∗ − 𝛼𝑖,𝑘

∗  is a one-degree-of-freedom estimator of the bias. If 

one uses 𝑟2,1 as 𝑟1,2, 𝑟2,2 as 𝑟1,3, etc., a form of (14) becomes  

�̃�𝑖,𝑇
∗∗ = 𝐵1

−1 ∑𝐵1
𝑘=1 (𝛼𝑖,𝑘

∗ + 𝛼𝑖,𝑘+1
∗ − 𝛼𝑖,𝑘

∗∗ ), (15) 

 where 𝛼𝑖,𝑘+1
∗  is generated with 𝐷𝐺(  𝝍 ̂ , 𝑟1,𝑘+1) and 𝛼𝑖,𝑘

∗∗  is generated with 

𝐷𝐺( 𝝍 𝑘
∗ , 𝑟1,𝑘+1). We call the estimator (15) a telescoping bootstrap because it is 

of the form (14) using lagged values of 𝛼𝑖,𝑘
∗ . If the use of 𝑟2,𝑘 in place of an 
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independent random number results in positive correlation between 𝛼𝑖,𝑘
∗  and 

𝛼𝑖,𝑘−1
∗∗ , then �̃�𝑖,𝑇

∗∗  will have smaller simulation variance than �̃�𝑖,𝐶
∗∗  of (13). 

3. Simulations 

In the simulation study we consider 𝑚 = 36 areas with unit level observations 

𝑥𝑖𝑗 in three groups of 12 areas, with sizes 𝑛𝑖 ∈ {2,10,40}. The number of 

additional unit level observations is 𝑛𝑖′ = 10, for each area 𝑖. Each 

sample, (𝒚, 𝒙, �̃�), is generated using model (1 - 3) with 𝜎𝑏
2 = 0.25, 𝜇𝑥 = 0, 𝜎𝛿

2 =
0.16, and 𝜎2 = 0.36. The vector of coefficients for the fixed effects is (𝛽0, 𝛽1) =

(−0.8,1) and 𝒙𝑖𝑗 = (1, 𝑥𝑖𝑗). For each unit, the probability that 𝑦𝑖𝑗 = 1 is  

𝑔(𝒙𝒊𝒋𝜷 , 𝑏𝑖) =
exp(−0.8+𝑥𝑖𝑗+𝑏𝑖)

1+exp(−0.8+𝑥𝑖𝑗+𝑏𝑖)
. (16) 

The population mean of 𝑔(𝒙𝒊𝒋𝜷 , 𝑏𝑖) is 0.334 with variance 0.029. An area 

with 𝜇𝑥𝑖 = 0.4 has mean 0.412 with variance 0.028. Four hundred Monte Carlo 

samples were generated satisfying the model. 

The estimation models are:   

• Model 1: Specified by (1) and (6) and described in Section 2.2.1. Known 

normal distribution for 𝑥𝑖𝑗. The distribution of 𝑦𝑖𝑗 is  

𝑓(𝑦𝑖𝑗|𝑥𝑖𝑗 , 𝑏𝑖) = 𝐼(𝑦𝑖𝑗 , 1)𝑔(𝒙𝒊𝒋𝜷 , 𝑏𝑖) + 𝐼(𝑦𝑖𝑗 , 0)(1 − 𝑔(𝒙𝒊𝒋𝜷 , 𝑏𝑖)), 

where 𝐼(𝑦𝑖𝑗 , . ) is the indicator function, and 𝑔(𝒙𝒊𝒋𝜷 , 𝑏𝑖) is defined in (16). 

The distribution of 𝑏𝑖 is 𝑁(0,0.25). 

• Model 2: Specified by (1) and (6) and described in Section 2.2.2. Sample 

estimated distribution of 𝒙 based on the original sample 𝒙. 

• Model 2*: Specified by (1) and (6) and described in Section 2.2.2. Sample 

estimated distribution of 𝒙 based on the original sample 𝒙 augmented by a 

sample �̃� = (�̃�1, �̃�2, . . . , �̃�𝑚). 

• Model 3: Specified by (1), (2), (6) and described in Section 2.2.3. Unknown 

random auxiliary mean 𝜇𝑥𝑖. Distributions of 𝑦𝑖𝑗 and 𝑏𝑖 are the same as those 

for Model 1. The distribution of 𝑥𝑖𝑗 is defined by the random model given in 

Section 2.2.3. 

• Model 4: Specified by (1), (2), (3), (6) and described in Section 2.2.4. 

Unknown random auxiliary mean 𝜇𝑥𝑖 and observed �̃� = (�̃�1, �̃�2, . . . , �̃�𝑚). 
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The models are fitted as generalized linear mixed models, using the lmer and 

glmer functions in the lme4 package in R. The true 𝑖𝑡ℎ small area mean of 𝒚 is 

given by (4) and the predicted 𝑖𝑡ℎ area means of 𝒚 are given in (7 - 10), with 

estimated (𝜇𝑥 , 𝛽0, 𝛽1, 𝜎𝑏
2, 𝜎𝛿

2, 𝜎2). The integrals in (4, 7 - 10) were approximated 

using a 26-point approximation to the normal distribution.  

3.1. Refinement of Prediction MSE Estimators 

Wang and Fuller (2003) suggested the estimator of 𝜎𝛿
2 be bounded by  

 𝐾𝛿,𝑠 = 0.5[�̂�(�̂�𝛿
2|𝜎𝛿

2 = 0)]
0.5

, 

where �̂�(�̂�𝛿
2|𝜎𝛿

2 = 0) is the estimated variance of �̂�𝛿
2, given 𝜎𝛿

2 = 0. Because of 

the large degrees of freedom for �̂�2, we set 𝐾𝛿,𝑠 equal to the true value of 0.008 in 

the simulations,  

 𝐾𝛿,𝑠 = 0.5[2𝑚(𝑚 − 1)−1(∑𝑚
𝑖=1 ((𝑛𝑖 + 𝑛𝑖′)

−1𝜎2)−2)−1]0.5 = 0.008. 

Similarly, we bound the estimator of 𝜎𝑏
2 by  

 𝐾𝑏,𝑠 = 0.5[𝑉(�̂�𝑏
2|𝜎𝑏

2 = 0)]
0.5

= 0.006. 

The proportion of sample estimators �̂�𝑏
2 that hit the bound is 0.025, the 

proportion of level one estimators of �̂�𝑏
2∗ that hit the bound is 0.111. If �̂�𝑏,𝑘

2 =

0.006 we set 𝛼𝑖,𝑘
∗∗  equal to 𝛼𝑖,𝑘

∗ . That is, the estimated bias is zero for such 

samples. 

Using (13), one can obtain an unacceptable double bootstrap prediction MSE 

estimator, where the estimated bias for a sample is greater than the estimate. In 

practice, one would increase the number of bootstrap samples. Rather than build 

such a procedure into our Monte Carlo algorithm, we defined bounds for the 

estimator. Thus, the final estimator is 

 

    �̂�𝑖,𝐶
∗∗ = {

1.60�̅�𝑖
∗,    𝑖𝑓   �̅�𝑖

∗−1
�̅�𝑖

∗∗ > 1.60

0.83�̅�𝑖
∗,    𝑖𝑓   �̅�𝑖

∗−1
�̅�𝑖

∗∗ < 0.83

�̃�𝑖,𝐶
∗∗ ,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   ,

         (17) 

where 0.83 and 1.60 are the 0.025 and 0.975 points of the chi-square distribution 

with 199    (𝐵1 − 1) degrees of freedom, and �̃�𝑖,𝐶
∗∗  is defined in (13). The 

analogous definition holds for the telescoping estimator of (14). See Hall and 

Maiti (2006) for an alternative definition of the direct double bootstrap estimates.  
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The proportions of sample estimators of �̂�𝑖,𝑇
∗∗  that hit the lower bound defined 

in (17) are 0.016, 0.016 and 0.013, for the areas of sizes 2, 10 and 40, 

respectively. The proportions of sample estimators of �̂�𝑖,𝑇
∗∗  that hit the upper bound 

defined in (17) are 0.026, 0.069 and 0.084, for the areas of sizes 2, 10 and 40, 

respectively. Due to larger variability in the classic double bootstrap estimators, 

the proportions of sample estimators of �̂�𝑖,𝐶
∗∗  that hit the lower bound defined in 

(17) are 0.058, 0.048 and 0.041, for the areas of sizes 2, 10 and 40, respectively, 

and the proportions of sample estimators of �̂�𝑖,𝐶
∗∗  that hit the upper bound defined 

in (17) are 0.155, 0.201 and 0.183, for the areas of sizes 2, 10 and 40, 

respectively. 

3.2. MSE for Different Types of Auxiliary Information 

The coefficient of variation for �̂�𝑏
2 calculated for the 400 Monte Carlo 

samples is about 0.64, approximately the CV of a Chi-square with five degrees of 

freedom. The Monte Carlo relative bias of the estimator of �̂�𝑏
2 is about −0.12, 

which is approximately equal to eighteen Monte Carlo standard errors.  

Table 1 contains estimates of the prediction MSE, denoted by 𝛼, for fixed and 

random models with different amounts of auxiliary information. The simulation 

MSE standard errors are presented in parantheses below the MSE values. The 

smallest MSE is for Model 1, where the covariate distribution is known. The next 

smallest MSE is for Model 4, where the form of the covariate distribution is 

known, the covariate mean is random and the auxiliary information is available. 

The largest MSE is for Model 2, where the covariate distribution is not specified. 

The small area mean predictor for Model 3 is the conditional expected value 

formula given in (9). Notice that in the construction of the small area predictor for 

Model 4, given in (10), the conditioning is also on the additional source of 

information, 𝒙, available for the areas. 

The extra observations on 𝑥𝑖𝑗 represent additional information available about 

the distribution of 𝒙 for the area. Hence, the large gain in efficiency associated 

with 𝒙 for sample size two (compare 10.94 for Model 2∗ to 17.29 for Model 2). 

Model 3 differs from Model 2 in that the distribution of 𝑥𝑖𝑗 is assumed to be 

normal and the area mean is also assumed to be normally distributed. Adding 

these distributional assumptions changes the MSE from 17.29 to 13.22 for sample 

size two. The effect of added information is smaller for the random 𝜇𝑥𝑖 models 

(models 2∗ and 4) than for the fixed 𝜇𝑥𝑖 models (models 2 and 3). 

The contribution of the variance of the estimation error in the mean of 𝒙 to the 

MSE depends on the importance of 𝒙 in the model and on the size of the samples. 

With 𝑛𝑖 = 2, the MSE with known area mean of 𝒙 is 57% of the MSE with no 

additional information on the distribution of 𝒙. The reduction in MSE from 

adding independent observations on 𝒙 is related to the sizes of the two samples 

and to the model. If the small area mean of 𝒙 is fixed, the original sample is ten 

observations and the added sample is ten observations, the MSE falls midway 
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between that with no additional information and that with complete information. 

With fixed small area mean of 𝒙, an original sample of size 2 and an added 

sample of size 10, the expected added variance is one sixth of that of the original 

sample. In this simulation the effect of treating the mean as random is equivalent 

to adding 2.25 observations on 𝒙. 

Table 1.  MSE for different types auxiliary information (entries multiplied  

by 103) 

 Size  �̅�  Model 1  Model 2   Model 2*  Model 3  Model 4  

2  102.14  

 (6.13)  

 9.88 

(0.71) 

 17.29 

 (1.24) 

 10.94 

 (0.79) 

 13.22  

 (0.92)  

 10.72  

 (0.76)  

10  20.15  

 (1.40)  

7.15 

(0.52)  

 8.56 

 (0.63) 

 7.87  

 (0.57) 

 8.26  

 (0.60)  

 7.76  

 (0.56)  

40 5.14 

(0.37) 

 3.46  

 (0.25)  

 3.81 

 (0.27) 

 3.74  

(0.27)  

 3.78  

 (0.27)  

 3.72 

 (0.27) 

 

Model 1: known distribution for 𝑥𝑖𝑗,  

Model 2: unknown distribution for 𝑥𝑖𝑗, with no �̃�,  

Model 2*: unknown distribution for 𝑥𝑖𝑗, with observed �̃�,  

Model 3: random 𝜇𝑥𝑖, with no �̃� ,  

Model 4: random 𝜇𝑥𝑖, with observed �̃�  

3.3. Monte Carlo Properties of Prediction MSE Estimators 

The relative performances of bootstrap prediction MSE estimators under the 

different types of auxiliary information are similar. Therefore, we only present 

properties of prediction MSE estimators for Model 4, where the area mean 𝜇𝑥𝑖 is 

random and auxiliary information �̃� is available. 

Table 2 contains results for (�̂�∗, �̂�𝑇
∗∗, �̂�𝐶

∗∗) for the three area sample sizes, in 

groups of five lines. Each line is the average of the results for the 12 areas with 

the same sample size. The first line is the Monte Carlo estimates of the prediction 

MSE, �̂�. The next four lines are of the bias relative to the mean, the coefficient of 

variation, the bias relative to the standard deviation and the bias relative to the 

standard error. The definitions are  

𝑅𝑒𝑙𝐵𝑖𝑎𝑠 = ∑

12

𝑖𝑠=1

(�̂�.,𝑖𝑠
𝐸𝑆𝑇

− �̂�.,𝑖𝑠) ∑

12

𝑖𝑠=1

�̂�.,𝑖𝑠⁄  , 

 

𝐶𝑉 = ∑

12

𝑖𝑠=1

√(400 − 1)−1 ∑

400

=1

(�̂� ,𝑖𝑠
𝐸𝑆𝑇 − �̂�.,𝑖𝑠

𝐸𝑆𝑇)2 ∑

12

𝑖𝑠=1

�̂�.,𝑖𝑠⁄  , 
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𝐵𝑖𝑎𝑠

𝑠𝑑
= ∑

12

𝑖𝑠=1

(�̂�.,𝑖𝑠
𝐸𝑆𝑇

− �̂�.,𝑖𝑠) ∑

12

𝑖𝑠=1

√(400 − 1)−1 ∑

400

휁=1

(�̂�휁,𝑖𝑠
𝐸𝑆𝑇

− �̂�.,𝑖𝑠
𝐸𝑆𝑇

)2⁄   , 

 
𝐵𝑖𝑎𝑠

𝑠𝑒
= 𝐵𝑖𝑎𝑠 (20𝑠𝑑⁄ )  , 

where 휁 indexes the Monte Carlo samples, 𝑖 denotes an area from a group of areas 

of sample size 𝑠, �̂�.,𝑖𝑠 = (400)−1 ∑400
=1 �̂� ,𝑖𝑠 is the average of the Monte Carlo 

prediction error estimators, �̂�.,𝑖𝑠
𝐸𝑆𝑇 = (400)−1 ∑400

=1 �̂� ,𝑖𝑠
𝐸𝑆𝑇 is the average of the 

bootstrap prediction MSE estimators, and �̂�𝐸𝑆𝑇 ∈ {�̂�∗, �̂�𝑇
∗∗, �̂�𝐶

∗∗} is the bootstrap 

estimator for an area. The estimated prediction MSEs have CVs of about 

40%, 32% and 22% for 200 bootstrap samples for sample sizes 2, 10, and 40, 

respectively.  

In all cases the telescoping double bootstrap, denoted with a subscript T, has 

lower MSE than the classic double bootstrap, denoted with a subscript C. The 

estimators �̂�𝑇
∗∗ and �̂�𝐶

∗∗ have the same bias if the bound (17) is not used. The 

double bootstrap reduces the absolute value of the bias for all the sample sizes. 

However, the absolute bias of the double bootstrap is about 6% of the true value 

for sample size 2.  

Table 2.  Monte Carlo properties of prediction MSE estimators  

 (𝐵1 = 200, 𝐵2 = 1 and 400 MC samples, variances multiplied by 103) 

 Size   Measure �̂�∗  �̂�𝑇
∗∗   �̂�𝐶

∗∗  

2  𝑉(𝜃 − 𝜃) 

RelBias 

𝐶𝑉(�̂�) 

Bias/sd 

Bias/se 

 10.723  

 -0.143  

  0.403  

 -0.355  

 -7.097  

 10.723  

 -0.058  

  0.456  

 -0.127  

 -2.537  

 10.723 

 -0.062  

  0.477 

 -0.130  

 -2.609 

10  𝑉(𝜃 − 𝜃) 
RelBias 

𝐶𝑉(�̂�) 

Bias/sd 

Bias/se 

  7.758  

 -0.133 

  0.318  

 -0.417  

 -8.336  

  7.758  

 -0.032  

  0.365  

 -0.087  

 -1.738  

  7.758 

 -0.039 

  0.385 

 -0.102 

 -2.034 

40 𝑉(�̂� − 𝜃) 

RelBias 

𝐶𝑉(�̂�) 

Bias/sd 

Bias/se 

  3.721  

 -0.082  

  0.222  

 -0.372  

 -7.430  

  3.721  

  0.016  

  0.260  

  0.062  

  1.249  

  3.721 

  0.009 

  0.286 

  0.032 

  0.636 

The variance of an estimator of the prediction MSE has two components. The 

first, that we call between, is the variance one would obtain if one used an infinite 

number of bootstrap samples. The second, that we call within, is the variability 

due to the fact that our set of bootstrap samples is a sample of samples.  
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We estimate these two components using two independent sets of bootstrap 

samples. That is, for each Monte Carlo sample, we generate two sets of (𝐵1 =
100, 𝐵2 = 1) samples. The sequences of random seeds 𝑟1,𝑘′, 𝑟2,𝑘′, 𝑘 = 1, . . . , 𝐵1 

for the second set are independent of the sequences of random seeds 𝑟1,𝑘, 𝑟2,𝑘, 𝑘 =
1, . . . , 𝐵1 for the first set. Let (�̂�∗, �̂�∗∗, �̂�𝑇

∗∗, �̂�𝐶
∗∗) be the prediction MSE estimates 

for the first group of bootstrap samples and let (�̂�2
∗ , �̂�2

∗∗, �̂�𝑇2
∗∗ , �̂�𝐶2

∗∗ ) be the 

prediction MSE estimates for the second group of bootstrap samples. The within 

variance component for 𝐵1 = 100 is estimated by half of the mean of squared 

differences between the two prediction MSE estimates,  

 𝑉𝑎𝑟𝑤𝑖𝑡ℎ𝑖𝑛
𝐸𝑆𝑇 = (12)−1 ∑12

𝑖𝑠=1 ((400)−1 ∑400
=1 (�̂� ,𝑖𝑠

𝐸𝑆𝑇 − �̂�2, ,𝑖𝑠
𝐸𝑆𝑇 )2)/2. 

The variance components for the prediction MSE estimators (�̂�∗, �̂�𝑇
∗∗, �̂�𝐶

∗∗) are 

given in Table 3 for (𝐵1 = 100, 𝐵2 = 1). The estimated between variance 

component is the difference between the estimated total variance and the 

estimated within variance component. The entries in the table are averages over 

the areas of the same sample size and over the Monte Carlo samples. 

Table 3. Estimated variance components for variance of estimated prediction 

MSE 

 (Within is for 100 bootstrap samples. All variances have been 

multiplied by 106) 

Source of 

Variation 
Size 𝛼∗ 𝛼𝑇

∗∗ 𝛼𝐶
∗∗ 

     

Between 

Within 

Total 

2 

 

 

17.886 

 2.099 

19.985 

23.040 

 3.903 

26.943 

23.040 

10.599 

33.639 

Between 

Within 

Total 

10 

 

 

 5.562 

 1.099 

 6.661 

 7.267 

 2.324 

 9.591 

 7.267 

 5.376 

12.643 

Between 

Within  

Total  

40 

 

 

 0.544 

 0.264 

 0.808 

 0.725 

 0.613 

 1.338 

 0.725 

 1.300 

 2.025 

The between component for the level one bootstrap is about 75% of the 

between component for the double bootstrap procedures. This is not surprising as 

bias reduction procedures often increase the variance. The bootstrap sampling 

variance, the within component, for the classic double bootstrap is about five 

times that of the level one bootstrap. The telescoping bootstrap is 2.1 to 2.7 times 

as efficient as the classic double bootstrap. 
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4. Summary 

We used a simulation study of a unit level logistic model to compare the 

impact of different levels of auxiliary information. The minimum mean squared 

error predictors for the small area means were obtained by conditioning on the 

information available for an area. That information is the unit level response 

realizations, the unit level covariate observations, and the sometimes available 

additional unit level auxiliary information. We considered fixed and random mean 

models for the covariates, as well as known and unknown distribution for the 

covariates. The percentage effect on the prediction MSE of including auxiliary 

information in the estimation is smaller for the random mean model than for the 

fixed mean model for the covariates because using a random model is equivalent 

to adding observations.  

We presented a parametric double bootstrap procedure for the prediction MSE 

for the unit level logistic model. The fast double bootstrap procedure, where the 

number of level-two bootstrap samples is 𝐵2 = 1, has superior bootstrap 

efficiency relative to the classic double bootstrap procedure with 𝐵2 > 1. The 

double bootstrap reduces the prediction MSE estimation bias to less than 50% of 

the bias of the level-one bootstrap. The double bootstrap increases the standard 

error of the prediction MSE estimator by 13 to 17% relative to that of the level-

one bootstrap.  
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ABSTRACT 

In 2011, Germany conducted the first census after the reunification. In contrast to 

a classical census, a register-assisted census was implemented using population 

register data and an additional sample. This paper provides an overview of how the 

sampling design recommendations were set up in order to fulfil legal requirements 

and to guarantee an optimal but still flexible source of information. The aim was to 

develop a design that fosters an accurate estimation of the main objective of the 

census, the total population counts. Further, the design should also adequately 

support the application of small area estimation methods. Some empirical results 

are given to provide an assessment of selected methods. The research was 

conducted within the German Census Sampling and Estimation research project, 

financially supported by the German Federal Statistical Office. 

Key words: register-assisted census, small area estimation, design optimisation, 

relative root mean squared error. 

1. Introduction 

The Census 2011 was the first after the German reunification. The last census 

in the Federal Republic of Germany was implemented in 1987, whereas the last 

census in the former German Democratic Republic (GDR) was conducted in 1981. 

For the first time in German Census history and for the first common census after 

the reunification, it was decided to conduct the Census in 2011 as a register-assisted 

census. The main sources of information are population registers. Additionally, 

a sample of approximately 10% of the population is drawn for two purposes. First, 

to assess the number of over- and under-counts in the registers aiming at deriving 
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the total census counts. Second, the sample information is used to estimate variables 

that were not included in the population registers. Certainly, the population register 

information can also be used as a source of auxiliary information. 

The lowest level of official territorial division in Germany is the communities 

that have varying numbers of inhabitants. At the time of the Census 2011 the most 

populated community is Berlin but there are also 5 communities with less than 20 

inhabitants. The most important target of the German Census was the determination 

of the official population sizes for each of the 11,399 communities. Due to the new 

census mode, adequate methodologies had to be developed, including sampling 

design and estimation strategies. Hence, a research project was granted by the 

Federal Ministry of the Interior and the German Federal Statistical Office to 

investigate an appropriate sampling design taking into account the German 

administration structure. 

In addition to developing and recommending an optimal sampling design under 

the given circumstances, estimation strategies had to be developed that can be used 

in connection with this sampling design. In order to appropriately investigate the 

interplay of sampling design and estimation strategies, a close-to-reality universe 

of synthetic data had to be developed which was based on real register data. This 

universe was used as a sound basis for carrying out an extensive simulation. This 

article addresses the key findings of the sampling and estimation research project. 

2. Objectives and frame of the German Census 2011 

The Census 2011 sample had to be drawn to fulfil two main objectives: 

Objective 1 Determination of the official population size for each community, i.e. 

estimating census over- and under-counts in order to derive the population sizes, 

Objective 2 Estimation of key figures for additional variables. 

Extensive planning preceded the realisation of the Census 2011. A census test, 

implemented in 2001, served as a preparation to gain initial information for the 

concept of a register-assisted census in Germany. The census law was launched in 

2006. In the contract of the coalition, the reduction of burden and the use of modern 

methods were stipulated. The aim was to reduce costs without losing quality of 

important figures. The resulting figures should serve as a basis for administrative 

planning and decisions, and especially for financial adjustments between federal 

states. Therefore, it was necessary to reach a high level of quality. 

The census law covered several important settings of the register-assisted 

census like variables of interest, rough description of the register-assisted structure, 

the sampling units, and quality margins. The quality constraints were especially 

important for objective 1 due to the importance of the population figures. The 

second objective was the estimation of variables not contained in the registers, e.g. 

on housing and living conditions. The relevant source of information for estimating 

over- and under-counts as well as for non-register variables is based on a sample of 
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addresses drawn from an address register containing all buildings and dwellings. 

Here, an address is defined as an address with housing space. There are addresses 

with only one inhabitant but also addresses with several hundred flats and 

inhabitants. A detailed description of the frame is provided by Kleber et al. (2009) 

and Bechtold (2013). 

Numerous legal and administrative criteria of constraints had to be considered 

for the development of the underlying sampling design. As sampling units, 

complete addresses had to be drawn from the address register, i.e. all persons and 

households living at the given address. The address register was built exclusively 

for the Census 2011. In Germany, in general, one house is considered as an address. 

Obviously, the sampling units differed in size considerably, i.e. the variation of the 

number of inhabitants was very high which may have yielded a clustering effect for 

sampling. As an upper bound, 7.9 million inhabitants were sampled which covers 

approximately 10% of the population, not necessarily of the addresses. The design 

had to be as efficient as possible while considering the accuracy objectives for the 

estimation of the population counts stated in the census law. Further, feasibility was 

an important criterion that had to be considered. 

Finally, the estimation had to be carried out for small areas and domains. The 

main areas of interest were districts or communities with at least 10,000 inhabitants. 

As domains, the main population subgroups were of interest. One of the main tasks 

at the beginning of the project was to find a coherent way of defining areas for 

sampling that considered the hierarchical structure of 16 federal states, 412 

districts, and 11,339 communities. 

As already mentioned, the sizes of communities in Germany differed greatly. 

Within the census law, it was stated that communities with at least 10,000 

inhabitants played a major role in administrative and planning processes such that 

a different kind of inspection of over- and under-counts had to take place. It was 

important to consider these differences in the sampling design. Therefore, the first 

step was to build the so-called sampling points (SMP). These sampling points 

should be units with at least 10,000 registered persons that yield a frame of areas 

from which samples were drawn, according to the following scheme: 

 Type 0 (SDT): Parts of communities with more than 400,000 inhabitants, 

 Type 1 (GEM): Communities with at least 10,000 inhabitants and not  

of type 0, 

 Type 2 (VBG): Collection of small communities within districts that together 

covered 10,000 inhabitants and more, 

 Type 3 (KRS): Collection of the rest of small communities within a district. 

With these settings, Germany was completely split into regional structures that 

considered all administrative and legal constraints and which could be used directly 

for optimizing the sampling design. The distribution of the sampling point types in 

Germany is illustrated by Figure 1. Sampling points of type 0 are depicted in 
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yellow, sampling points of type 1 are coloured red. Sampling points of type 2 are 

coloured green and sampling points of type 3 are blue in colour. 

 

 

Figure 1. Map with sampling points in Germany (types 0 to 3 in yellow, red,  

green, and blue) 

3. Design optimisation and small area estimation 

The main objective, stated before as objective 1, was to accurately determine 

the population counts. Nevertheless, it was necessary to keep regional and 

substantive points resulting from objective 2 in mind. The task, after all, was to 

derive an appropriate sampling design and to allocate the total sample size in an 

appropriate way to the aforementioned sampling points to fulfil certain quality 

specifications laid down by law. In order to appropriately account for quality 

margins in terms of relative variances or related components, design-based 

(or model-assisted) methods should be considered. However, with respect to local 

area analysis it was important to ensure that model-based, and particularly small 

area estimation methods, could be employed and not be adversely affected by a 

sampling design which is too elaborate. 

. 
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3.1. Design optimisation 

The criteria for the evaluation of the possible designs resulted from different 

sources. The requirements imposed by the German government were formalised in 

the census law. The target of the Federal States was to get reliable regional 

estimates and tables. The interest of academia was empirical research using Census 

microdata. There was a strong interest in model building based on results of the 

Census in economic and social sciences. 

The selected survey design should ensure that different precision requirements 

were met for the different hierarchical entities. Adequate estimators had to be 

chosen to meet the requirements of the sampling design. The first step was to define 

the accuracy objectives adequately. This was necessary to decide on the allocation 

and optimisation issues of the sampling design. 

As a starting point, the relative root mean squared error (RRMSE) was chosen 

as a measure of accuracy. It allows for the comparison of design-based and model-

based estimators in a design-based environment. This collapses to the coefficient 

of variation for design-unbiased estimators. Based on the RRMSE, the following 

accuracy requirements were formulated for the Census 2011. The first objective 

concerned only total estimates tˆd of the size of the population Ud in communities d 

with more than 10,000 inhabitants: 

RRMSE(t̂d ) ≤ 0, 5%                                        (1) 

The same accuracy requirement was valid for parts of large towns with more 

than 400,000 inhabitants, the sampling points of type 0. As regards the second 

objective, the accuracy requirements depended on the type of sampling point and 

the variable of interest.  In order to appropriately define the quality margins for 

objective 2 variables, the proportion p of the occurrence of an outcome of the 

variable of interest Y is used. The following rule was applied for all types of 

variables, whereas the proportion p varied across sampling point types. The 

proportion p of the variable of interest Y is given by 

15

1
with  pp

t

t

dZ

dY   (2) 

where dYt  is the sum of inhabitants with property Y  in area d  and dZt  is the 

total number of inhabitants in area d . Small proportions with 15

1
p  were not 

considered under these settings. The accuracy requirement on the variable of 

interest is:  

 
p

tdY

1
)ˆ(RRMSE                                  (3) 



30           R. Münnich, J. P. Burgard, S. Gabler, M. Ganninger, J. P. Kolb: Small area … 

 

 

 

The relevant proportions p of the variables of interest are depicted in Table 1. 

Table 1. Maximum RRMSE dependent on p 

Objective 1 2 2 2 2 2 2 

p (in %): 100 80 50 30 20 10 6.7 

Maximum RRMSE (in %): 0.5 1.25 2 3.33 5 10 15 

 

As already stated, an optimised sampling design had to satisfy all administrative 

criteria as well as the accuracy margins given above. However, some additional 

issues became important. Before 2011, the annual Microcensus sample of 1% was 

often used as a gold standard. Any census estimate of households and persons 

should not, therefore, be based on a smaller sampling fraction than that of the 

Microcensus. Further, it was necessary to ensure that mean squared error estimation 

should be possible in a closed form, at least for objective 1 estimates. Additionally, 

the design had to be robust against the above settings. Furthermore, considerable 

dissimilarities in the treatment of different groups of persons had to be reduced as 

much as possible. And finally, statistical modelling, like sociometric, econometric 

and, of course, small area models, should be supported. 

In the context of model building, which is of particular interest for economic 

and social sciences, Gelman (2007) illustrated difficulties of survey weighting for 

regression modelling and argued that survey weighting is a mess. The Gelman 

bound (GB), which is defined as the ratio of the largest to the smallest design 

weight, is aimed not to exceed 10 and is unacceptable beyond 100. The reason for 

this is that Bayesian model building may become complicated in the presence of 

highly varying survey weights. 

On the basis of the exigencies defined above, a stratified sampling design was 

suggested. Information on variances and the numbers of persons within addresses 

(objective 1) within the strata were available from the population register. Note that 

a comparison of the accuracy of different sampling designs is presented in Section 

4.1, which yielded the recommendation to apply a stratified design. 

Maximal sampling fractions had to be chosen because sample sizes within strata 

should not exceed the population sizes. Minimal sampling fractions should 

guarantee reliable estimates in all relevant areas. The approach published by Gabler 

et al. (2012) takes into account all of the above criteria. An optimal allocation in 

the Neyman-Tschuprov sense was developed, which satisfied the upper and lower 

bounds of the sample sizes within each stratum and, hence, is called box-constraint 

optimal allocation. This approach also allows the optimization of the sample sizes 

amongst all sampling points simultaneously using a 2-norm of the RRMSE for all 

areas of interest: 

.)ˆ(RRMSE=||)ˆ(|| 2
2

2 d

d

ttRRMSE                                      (4) 



STATISTICS IN TRANSITION new series and SURVEY METHODOLOGY                   31 

 

 

A comparison of different algorithms for the box-constraint optimal allocation 

can also be found in Münnich et al. (2012b) and, as an integer problem, in Friedrich 

et al. (2015). 

In order to achieve a stratified sampling routine that enables a considerable 

variance reduction, all sampling points were stratified into eight address size 

classes. The eight classes in each sampling point were constructed to contain 

approximately the same number of persons. The box constraints yielded a maximal 

Gelman bound of 25. 

3.2. Design-based and model-based small area estimation 

Different estimators for the total of persons living in Germany have been 

examined within the research project. The most important ones are briefly 

presented here. An extensive discussion on these estimators is given in Rao (2003). 

Further details about the implementation in the German Census can be found in 

Münnich et al. (2012a). Münnich et al. (2009) discussed the application of binomial 

mixed-models and spatial small area models in the context of the census. For the 

implementation in other research projects see the working papers of the EURAREA 

project (see for example The EURAREA Consortium, 2004, or Guiblin et al., 2004) 

and the DACSEIS project (cf. Münnich et al., 2004). 

The following estimators are considered in this paper: 

 Horvitz-Thompson estimator (HT) The HT was considered as a 

benchmark. However, for objective 1, the loss of efficiency was very high 

since the population register was a very strong auxiliary variable. 

 Generalized regression estimator (GREG) With regards to the GREG, the 

question arose of the level at which the parameter estimation for the 

regression coefficients should take place. Two major results appeared. First, 

a separation with regards to the address size class yielded very unstable 

results, since in some cases extremely homogeneous numbers of individuals 

live in an address class. Second, using indirect estimates, i.e. using the 

regression information on higher than SMP level did not show significant 

differences in the quality of the estimates. With regards to the importance of 

objective 1, the community separate regression estimator was preferred for 

SMP 0 and 1. 

 EBLUP The classical Battese-Harter-Fuller unit-level estimator (Battese et 

al., 1988) was considered as the main small area estimator. 

 Weighted EBLUP (YOURAO) An extension of the EBLUP using design 

weights was proposed by You and Rao (2002). This estimator also fulfils the 

necessary benchmarking conditions to aggregate the small area estimates to 

the design-based national estimate. 
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In all cases where auxiliary variables could be included, the necessary demo- 

graphic variables from the population register were applied, i.e. number of persons, 

gender, and age classes. In the census test in 2001, the correlation between register 

counts and real counts was estimated to the level of 0.993 (cf. Münnich et al., 

2012a, p. 70) and, thus, the register count is a very efficient auxiliary variable in 

terms of objective 1. 

The Fay and Herriot (1979) basic area-level estimator was also considered. 

However, due to the very highly correlated population register information, this 

estimator was generally outperformed by the unit-level estimator and, hence, was 

omitted in this overview. As well as normal distribution-based models, estimators 

based on the binomial or Poisson distributions have been applied that account for 

the count structure. These estimators are built on the best prediction (BP) approach 

of Jiang and Lahiri (2001) with a setup similar to the one used in González-

Manteiga et al. (2007) and Münnich et al. (2009). The estimation was done based 

on the R-package lme4. Details can be found in the given references. 

 

For reasons of coherence, we focus in the next section on the main findings on 

the impact of sampling designs and some selected results in terms of objective 2. 

Some additional results of the project are as follows: 

 For objective 1, the community-separate GREG estimator yielded 

convincing results which could not be outperformed by small area 

estimators. The main reason is that the SMPs of type 0 and 1 are not 

sufficiently small, so that model-based methods cannot show their 

advantage. Additionally, accuracy estimation is much easier when applying 

design-based methods. 

 Objective 2 is much more complicated. Here, in many cases the YOURAO 

estimator was the best solution. However, it seems very important to think 

further about additional sources of auxiliary information in the future in 

order to further improve model-based estimates. The information in the 

population registers in many cases is not very efficient. 

 Further research needs to be done when there is interest in deriving high- 

dimensional tables or the one-number-census. A generalized calibration 

routine is under development, which at least allows implementing 

hierarchical information on areas and domains with different penalties. 

4. Estimation results 

Within the census sampling and estimation research project, a large number of 

Monte Carlo simulations have been conducted using sampling from the register 

dataset. This dataset was synthetically enlarged by some objective 2 variables using 

other sources like the Microcensus so that the final dataset was close to reality. The 

procedure is described in Münnich et al. (2012a) and Kolb (2013). 
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4.1. Results for classic estimation 

In an early stage of the project, different sampling approaches have been 
evaluated using a classical design-based simulation study. As main measure for the 
evaluation the RRMSE was applied using the known true value from the above 
mentioned universe. The results for three estimators under different sampling 
designs are shown in Figure 2, i.e. the HT, the GREG, the EBLUP. 

Every grid in Figure 2 shows the results for one estimator for the federal state 
of Saarland. As auxiliary variable, the register counts were used. The sampling 
designs are described in Table 2. The abbreviation BV in Table 2 denotes balancing 
variables in the case of balanced sampling (cf. Tillé, 2011). These were the register 
variables address size class (ADC) or nationality (NAT). 

The different sampling designs are presented in rows. For each sampling design 
three rows of ticks are presented, which denote the RRMSEs of 52 communities in 
Saarland. The upper tick in red covers one town, Saarbrücken. The green ticks de- 
note the RRMSEs of the large communities above 10,000 inhabitants. And finally, 
the yellow ticks present the RRMSEs of the smaller communities. The blue line 
yields the kernel density estimates of the RRMSEs from all communities. 

 

Figure 2. Comparisons of RRMSEs for various sampling designs for three total 

population estimates in Saarland 

The names of the sampling designs in Table 2 refer to the classical designs 

within the SMPs. The allocation between the communities was drawn proportion- 

ally to the number of addresses. 

Table 2. Different sampling designs - acronyms and their meanings 

Acronym description 

 

BAL1 Balanced sampling; BV: ADC, NAT 

StrRSopt2 Stratified random sample under optimal 

 allocation (addresses) 

StrRSopt1 Stratified random sample under optimal allocation 

 (persons) 

PiPSSys π-PS systematic random sample 

SYS Systematic random sample 

SRS Simple random sample 
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As one can see in Figure 2, the EBLUP is fairly robust against the given 

sampling designs since the register counts allow for a strong model. However, one 

has to note that here no Neyman-based stratified design was applied, which would 

already negatively influence the results for the EBLUP. In terms of design-based 

methods, the design had considerable impact on the accuracy of the estimators. 

Simple random sampling, as expected, is very inefficient using the HT and much 

better for the GREG. Since the PiPSSys selects almost all large addresses, which 

seems hardly preferably in terms of a representative census sample, the accuracy of 

the results was considerably dependent on the address size structure of the 

communities. Balanced sampling did not yield very good results since the balancing 

variables seemed not to be so powerful and not many variables were available from 

the population register. The easier to implement stratified sampling designs seemed 

preferable with respect to accuracy, simplicity, and robustness against changes of 

settings as long as no specific allowance had to be made for smaller communities. 

Finally, the results pointed to the use of stratified random sampling with some 

further optimization. The main gain in efficiency was stratification by address size. 

By the reasons given above, a box-constraint optimal allocation was introduced that 

guaranteed the necessary efficiency while still avoiding too much variation in the 

weights. Further, in any area, the census estimates were considerably more efficient 

than Microcensus estimates and no sub-population was drawn with a probability 

greater than 50%. 

The results for the RRMSE under stratified sampling and box-constraint 

optimal allocation for different federal states are shown in Figure 3. The ordinate 

displays the different types of sampling points (from zero to three), while the 

abscissa indicates the RRMSE of the GREG estimator. Note that the results are 

theoretical results based on the address structure within the register and on the 

preassigned correlation of 0.993 between the register and true counts of people 

within addresses. Figure 3 shows that a-priori accuracy goals given in the census 

law were met in all SMPs of type 0 and 1, except for one community which failed 

slightly. 

One has to note that even if the accuracy within SMPs 2 and 3 seems much 

lower, most SMPs of type 2 are still under 1% RRMSE which would have been the 

theoretical quality threshold using the objective 2 definition. Münnich et al. (2012a) 

showed that aggregating several estimates yields a RRMSE which is at least as 

good as the worst of the separate areas, which guarantees a hierarchical 

improvement by aggregation. Within the simulations, it turned out that this 

improvement, in general, is considerable. 

Since the estimates of the total population (objective 1) were expected to be 

used for fiscal equalisation schemes between federal states and communities, 

special attention had to be paid to the estimator. Different possibilities were 

available for the estimation of the β -parameter of the GREG. Finally, the β -

coefficient was estimated separately by SMP-type level, which in terms of the 

census law was separately by large community-level (above 10,000 inhabitants). 
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This was important to avoid a consideration of quality effects using indirect 

estimates employing information from other areas. 
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Figure 3. RRMSE of GREG estimates of population totals by federal state and 

sampling point type 

 

4.2. Further ideas on small area applications 

One of the objective 2 variables in the research project was the number of 

persons with foreign nationality (here the Turkish population) who had moved to 

Germany within a certain time span. Different estimators were applied to this 

estimation problem and the resulting RRMSEs are depicted in Figure 4 (Münnich 

et al. 2012a, pp. 104). 

The descriptions of the headings in Figure 4 are provided in Table 3. In this 

Figure it is clear that YOURAO and EBLUP achieved the best results. However, 

for type 3 SMPs, the YOURAO estimator still yielded slightly better results, 

especially for earlier years of interest. Amazingly, the small area estimators also 

performed well in most cases of larger areas of type 0 and 1. 

As a very important task in small area modeling, we have to consider vertical 

coherence, i.e. the aggregated small area estimates shall sum up to the national level 

estimates. It is well known that the GREG and YOURAO estimators fulfil this 

benchmarking condition. However, as a slightly more detailed assumption, we 

consider coherence to the next level, which in the German Census should also 
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include coherence at the district level. This is, therefore, measured as the difference 

between the sum of the lower level total estimates and the higher total estimate. 

 

Figure 4. RRMSE for the estimation of selected years of moving in 
 

Figure 5 indicates that the GREG is always coherent as long as the regression 

coefficient was estimated on the upper level which was the case in this example. 

The EBLUP suffers considerably from a lack in coherence. The YOURAO shows 

little deviations which may in fact be a result of a lack of the model in some districts. 

Further, the benchmarking condition holds only for the level on the   estimates, 

which here was the federal state level, which is higher than the district level. 

However, the deviation from perfect coherence is already small and much better 

than in the case of the EBLUP. 

 

Table 3. Description of headings in Figure 4 

Heading description 

 Number of persons, with Turkish nationality which 

T_1960 moved to Germany between 1950 and 1960 

T_1970 moved to Germany between 1960 and 1970 

T_1980 moved to Germany between 1970 and 1980 

T_1990 moved to Germany between 1980 and 1990 
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Figure 5. Coherence of aggregated SMPs estimates against district level estimates 
 

To further force coherence of small area methods using different types of 

estimator the use of an extended calibration functional with penalties for further 

constraints based on regional small area estimates could be applied. By legal 

reasons, the first objective was exactly met on SMP level (0 and 1). Selected 

objective 2 estimates were met with high precision on the district level, whereas a 

lower preassigned precision was reached by other objective 2 estimates on SMP 

level. The variation of weights was constrained within the Gelman-bounds. It was 

possible to control the penalties separately on different levels and outcomes of 

covariates. Small area estimates for the totals can be used as benchmarks for 

objective 2 estimation. It is possible to apply different small area methods like, for 

example, the Battese-Harter-Fuller (Battese et al., 1988), the You-Rao (You and 

Rao, 2002), the Fay-Herriot and other estimators. The Lagrange multipliers provide 

a means to understand possible strains on area, domain or outcome of variables. 

This generalized calibration routine can be drawn from Münnich et al. (2012c) or 

Wagner (2013). 

For a deeper overview of results from the entire study, we refer to Münnich et 

al. (2012a). The results suggested that the design recommendation still left enough 

space for applying small area methods. However, if a wider set of auxiliary 

variables was available from registers, e.g. by using matching methods, we would 

expect still a considerable improvement in the small area estimators. 

5. Conclusions 

As an outcome of the census sampling and estimation research project on the 

first German register-assisted census a recommendation was made for adopting a 

hierarchical SMP structure and a box-constraint optimal allocation for the sample 

sizes of addresses. For the first objective the use of a SMP-separate GREG was 

suggested. Either GREG or YOURAO estimators seemed adequate for the second 

objective depending on the target variable. An important consideration was that 
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objective 1 estimates were used to construct new population figures. Furthermore, 

the coherence of estimates was a very important target. In the case of a mix of 

methods on different hierarchies, an application of the generalized calibration 

method may be considered in the future. 

It had to be ensured that the chosen methods were computationally tractable. 

Multinomial small area estimates may be promising to be applied in the future but 

currently suffer from the computational effort. To achieve further improvements of 

model-based estimators, the use of linking and matching of several registers should 

be further analysed, e.g. using specialised matching routines. 

More information about the German Census 2011 can be found on the official 

website www.zensus2011.de or in Münnich et al. (2012a). 
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A COMPARISON OF SMALL AREA ESTIMATION
METHODS FOR POVERTY MAPPING

María Guadarrama1, Isabel Molina2, J. N. K. Rao3

ABSTRACT

We review main small area estimation methods for the estimation of general non-
linear parameters focusing on FGT family of poverty indicators introduced by Fos-
ter, Greer and Thorbecke (1984). In particular, we consider direct estimation, the
Fay-Herriot area level model (Fay and Herriot, 1979), the method of Elbers, Lan-
jouw and Lanjouw (2003) used by the World Bank, the empirical Best/Bayes (EB)
method of Molina and Rao (2010) and its extension, the Census EB, and finally the
hierarchical Bayes proposal of Molina, Nandram and Rao (2014). We put ourselves
in the point of view of a practitioner and discuss, as objectively as possible, the ben-
efits and drawbacks of each method, illustrating some of them through simulation
studies.
Key words: area level model, non-linear parameters, empirical best estimator, hi-
erarchical Bayes, poverty mapping, unit level models.

1. Introduction

Poverty maps are an important source of information on the regional distribution
of poverty and are currently used to support regional policy making and to allocate
funds to local jurisdictions. Good examples are the poverty and inequality maps
produced by the World Bank for many countries all over the world. In the U.S., the
Small Area Income and Poverty Estimates (SAIPE) program (http://www.census.gov
/hhes/www/saipe) of the Census Bureau provides annual estimates of income and
poverty statistics for all school districts, counties, and states, for the administra-
tion of federal, state and local programs and the allocation of federal funds to local
jurisdictions. In Europe, the joint project “Poverty Mapping in the New Member
States of the European Union" between the World Bank and the European Com-
mission was aimed to construct poverty maps for the new members of the EU.
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The TIPSE (The Territorial Dimension of Poverty and Social Exclusion in Europe)
project, commissioned by the European Observation Network for Territorial De-
velopment and Cohesion (ESPON) program, aims to support policy by creating a
regional database and associated maps of poverty and social exclusion indicators.
In Mexico, the National Council for the Assessment of the Social Development
Policy (CONEVAL) is committed by law to produce regular poverty and inequality
estimates at the state level by population subgroups and at municipality level.

Obtaining accurate poverty maps at high levels of disaggregation is not straight-
forward because of insufficient sample size of official surveys in some of the target
regions. Direct estimates, obtained with the region-specific sample data, are unsta-
ble in the sense of having very large sampling errors for regions with small sample
size. Very unstable poverty estimates might make the seemingly poorer regions
in one period appear as the richer in the next period, which can be contradictory.
On the other hand, very stable but biased estimates (e.g., too homogeneous across
regions) might make identification of the poorer regions difficult.

Here we review the main methods for the estimation of general non-linear small
area parameters, focusing for illustrative purposes on a specific family of poverty
indicators introduced in Section 2. Specifically, in Section 3 we describe direct
estimation, the EBLUP based on the Fay-Herriot area level model (Fay and Her-
riot, 1979), the method of Elbers, Lanjouw and Lanjouw (2003), the empirical
Best/Bayes (EB) method of Molina and Rao (2010) together with its variation called
Census EB, and hierarchical Bayes (HB) method of Molina, Nandram and Rao
(2014). We discuss advantages and disadvantages of each procedure from a practi-
cal point of view. In Section 4 we illustrate their performance in simulations under
several scenarios, including the cases of informative sampling or the presence of
outliers. Finally, in Section 5 we draw some conclusions.

2. Poverty indicators

In this paper, we will focus on the FGT family of poverty indicators introduced
by Foster, Greer and Thorbecke (1984). Consider a population P of size N that is
partitioned into D domains or areas P1, . . . ,PD, of sizes N1, . . . ,ND. Let Edi be a
measure of welfare for individual i (i = 1, . . . ,Nd) in area d (d = 1, . . . ,D). Let z be
the poverty line, that is, the value such that when Edi < z, individual i from area d
is regarded as “at risk of poverty". Then, the FGT family of poverty indicators for
area d is given by

Fαd =
1

Nd

Nd

∑
i=1

(
z−Edi

z

)α

I(Edi < z), α ≥ 0, d = 1, . . . ,D, (1)
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where I(Edi < z) = 1 if Edi < z, and I(Edi < z) = 0 otherwise. For α = 0 we obtain
the proportion of individuals “at risk of poverty", that is, the poverty incidence or
at-risk-of-poverty rate. For α = 1, we get the average of the relative distances to not
being “at risk of poverty", called the poverty gap. The poverty incidence measures
the frequency of poverty, whereas the poverty gap measures the intensity of poverty.
We remark that the unit level methods introduced in this paper can be applied to
estimate any desired population characteristic that is obtained as a real measurable
function of a continuous variable, as long as this variable follows the considered
model in each method.

3. Estimators

Estimation of population characteristics is typically based on a sample s drawn from
the population P. We denote by sd = s∩Pd the subsample from area d of size nd <

Nd and by rd = Pd − sd the complement of sd , of size Nd −nd . The overall sample
size is n = n1 + · · ·+nD. The following subsections describe common estimators of
poverty indicators obtained from the sample data.

3.1. Direct estimators

Turning now to estimation in a given domain or area d, a direct estimator is an
estimator obtained using only the nd observations from that area, provided that this
area has been sampled (i.e., nd > 0). The FGT poverty indicator (1) of order α for
area d can be expressed as a linear parameter as follows

Fαd = N−1
d

Nd

∑
i=1

Fαdi, Fαdi =

(
z−Edi

z

)α

I(Edi < z), i = 1, . . . ,Nd .

Then, the basic direct estimator of Fαd is simply given by

F̂DIR
αd = N−1

d ∑
i∈sd

wd,iFαdi, (2)

where wd,i = π
−1
d,i is the sampling weight of unit i from area d and πd,i is the inclusion

probability of unit i in the subsample sd .
Below we list the advantages and disadvantages of direct estimators, such as (2),

for small area estimation.

Advantages:

• They are (at least approximately) design-unbiased and design-consistent (as
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nd → ∞). Thus, they perform well under complex sampling designs, includ-
ing informative sampling, as long as they are calculated using the correct
inclusion probabilities.

• They do not require model assumptions; that is, they are completely nonpara-
metric.

Disadvantages:

• They are very inefficient for areas with very small nd .

• They cannot be calculated for nonsampled areas (i.e., with nd = 0).

3.2. Fay-Herriot model

Fay-Herriot (FH) area level model links the parameters of interest for all the areas,
Fαd , d = 1, . . . ,D, through a linear model as

Fαd = x′dβ +ud , d = 1, . . . ,D, (3)

where xd is a p-vector of area level covariates, β is the regression parameter com-
mon for all areas, and ud is the area-specific regression error, also called random
effect for area d. We assume that area random effects ud are independent and iden-
tically distributed (iid), with unknown variance σ2

u , that is, ud
iid∼ (0,σ2

u ). Note that
true values Fαd are not observable and therefore model (3) cannot be directly fitted.
However, we can make use of a direct estimator F̂DIR

αd of Fαd . FH model assumes
that F̂DIR

αd is design-unbiased, with

F̂DIR
αd = Fαd + ed , d = 1, . . . ,D, (4)

where ed is the sampling error for domain d. We assume that sampling errors ed

are independent of random effects ud and satisfy ed
ind∼ (0,ψd), where the sampling

variances ψd , d = 1, . . . ,D, are assumed to be known. Combining (3) and (4), we
obtain a linear mixed model

F̂DIR
αd = x′dβ +ud + ed , d = 1, . . . ,D. (5)

The best linear unbiased predictor (BLUP) of Fαd = x′dβ +ud under model (5)
is given by

F̃FH
αd = x′d β̃ + ũd , (6)
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where ũd = γd(F̂DIR
αd −x′d β̃ ) is the BLUP of ud , with γd = σ2

u /(σ
2
u +ψd) and where

β̃ is the weighted least squares estimator of β , given by

β̃ =

(
D

∑
d=1

γdxdx′d

)−1 D

∑
d=1

γdxdF̂DIR
αd .

In practice, the variance σ2
u of the area effects ud is unknown and needs to be es-

timated. Common estimation methods are maximum likelihood (ML) and restricted
maximum likelihood (REML). REML corrects for the degrees of freedom due to
estimating β and leads to a less biased estimator of σ2

u for finite sample size n. Let
σ̂2

u be the resulting estimator. Replacing σ̂2
u for σ2

u in (6), we obtain the empirical
BLUP (EBLUP) of Fαd , denoted here as F̂FH

αd and called hereafter FH estimator.
A second-order correct estimator of MSE (F̂FH

αd ) is given in Rao (2003, Chapter
7), assuming normality of ud and ed . Good and bad properties of FH estimator (6)
are listed below, including particular properties for poverty mapping.

Advantages:

• The BLUP under FH model can be expressed as a weighted combination of
the direct and the regression-synthetic estimators, that is,

F̃FH
αd = γdF̂DIR

αd +(1− γd)x′d β̃ , d = 1, . . . ,D. (7)

with weight γd = σ2
u /(σ

2
u +ψd). Then, for an area d in which the direct esti-

mator F̂DIR
αd is inefficient, that is, with a large sampling variance ψd compared

to the unexplained between-area variability σ2
u , γd becomes small and F̃FH

αd
borrows more strength from the other areas through the regression-synthetic
estimator x′d β̃ . On the other hand, for an area d in which the direct estimator
F̂DIR

αd is efficient, that is, with small sampling variance ψd compared to the
unexplained between-area variability σ2

u , γd is large and F̃FH
αd attaches more

weight to the direct estimator. Thus, FH estimator automatically borrows
strength for the areas where it is needed.
• If γd > 0 for area d, it makes use of the sampling weights wd,i through the

direct estimator F̂DIR
αd . Thus, it is design-consistent (as nd → ∞). As a con-

sequence, it is less affected by informative sampling provided that the direct
estimator is calculated using the correct inclusion probabilities.
• Due to the aggregation of data, it is not very much affected by isolated unit

level outliers.
• It requires only area level auxiliary information and therefore avoids the con-

fidentiality issues associated with micro-data.
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Disadvantages:

• The sampling variances ψd are assumed to be known, but in practice they are
estimated. It is not easy to incorporate the uncertainty due to estimation of
the sampling variances in the MSE.

• The number of observations used to fit the FH model is the number of areas
D, which is typically much smaller than the number of observations used
to fit unit level models, n. Thus, model parameters are estimated with less
efficiency and therefore the efficiency gains with respect to direct estimators
are expected to be smaller than under unit level models.

• It requires normality of ud and ed for MSE estimation. This might not hold
for very complex poverty indicators.

• If we want to estimate several indicators depending on a common continuous
variable, it requires separate modeling and searching for good covariates for
each indicator.

• Once the model is fitted at the area level, small area estimates F̂FH
αd cannot

be further disaggregated for subdomains or subareas within the areas unless a
new good model is found at that subarea level.

3.3. ELL method

The method of Elbers, Lanjouw and Lanjouw (2003), called hereafter ELL method,
assumes a unit level linear mixed model for a log-transformation of the variable
measuring welfare of individuals, with random effects for the sampling clusters or
primary sampling units. For comparability with the rest of the methods presented
here, in the following we assume that the sampling clusters are the areas. In this
case, the model becomes the nested error model of Battese, Harter and Fuller (1988)
for the log-transformation of the welfare variables, that is, Ydi = log(Edi) is assumed
to be linearly related with a p-vector of auxiliary variables xdi, which may include
unit-specific and area-specific covariates, and includes random area effects ud as
follows

Ydi = x′diβ +ud + edi, i = 1, . . . ,Nd , d = 1, . . . ,D. (8)

Here, β is a p-vector of regression coefficients, ud
iid∼ (0,σ2

u ), edi
ind∼ (0,σ2

e k2
di), where

ud and edi are independent and kdi are known constants.
ELL estimator of Fαd is given by the marginal expectation F̂ELL

αd = E[Fαd ] under
model (8). This estimator and its MSE are approximated by a bootstrap method. In
this bootstrap procedure, random effects u∗d and model errors e∗di are generated from
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residuals obtained by fitting model (8) to survey data. Then, a bootstrap census of
Y -values is generated as

Y ∗di = x′diβ̂ +u∗d + e∗di, i = 1, . . . ,Nd , d = 1, . . . ,D,

where β̂ is an estimator of β . The generation is repeated for a = 1, . . . ,A, obtaining
A censuses. Then, for each bootstrap census a, the FGT poverty indicator for area d
is calculated as

F∗(a)
αd =

1
Nd

Nd

∑
i=1

(
z− exp(Y ∗(a)di )

z

)α

I(exp(Y ∗(a)di )< z).

The ELL estimator of Fαd is then approximated by averaging over the A generated
censuses, that is,

F̂ELL
αd =

1
A

A

∑
a=1

F∗(a)
αd .

The MSE of F̂ELL
αd is then estimated as follows

mse(F̂ELL
αd ) =

1
nd

A

∑
a=1

(F∗(a)
αd − F̂ELL

αd )2.

Advantages and disadvantages of ELL method are listed below.

Advantages:

• It is based on unit level data, which are richer than area level data and sample
size is much larger (n compared to D).

• ELL method can be applied to estimate general indicators defined as a func-
tion of the model response variables Ydi.

• They are model-unbiased if the model parameters are known.

• Once the model is fitted, estimates can be obtained at whatever subarea level.

Disadvantages:

• In terms of model MSE, ELL estimates perform poorly and can even perform
worse than direct estimators when unexplained between-area variation is sig-
nificant, see Molina and Rao (2010). In fact, for the estimation of domain
means, ELL estimates are basically equal to regression-synthetic estimators,
which assume the regression model without further between-area variation.

• They are based on a model assumption. Hence, model checking is crucial.
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• They are not design-unbiased and can be seriously biased under informative
sampling.

• They can be seriously affected by unit level outliers.

• If cluster effects are included in the model instead of area effects, but area
effects are significant, ELL estimates of the model MSE can seriously under-
estimate the true MSE. Even if area effects are included in the model, ELL
estimates of MSE do not track correctly the true MSE for each area.

3.4. Empirical Best/Bayes EB method

The empirical Best/Bayes (EB) method of Molina and Rao (2010) assumes that the
population variables Ydi follow the nested error model (8) with normality of random
effects ud and errors edi. Under that model, the area vectors Yd = (Yd1, . . . ,YdNd )

′

are independent for d = 1, . . . ,D and satisfy Yd
ind∼ N(µd ,Vd), where µd = Xdβ and

Vd = σ2
u 1Nd 1′Nd

+σ2
e Ad , for Ad = diag(k2

di; i = 1, . . . ,Nd). For an area parameter
δd = h(Yd), the estimator that minimizes the MSE, called best estimator, is given
by

δ̂
B
d = EYdr [h(Yd)|Yds;θ ] =

∫
h(Yd) f (Ydr|Yds;θ)dYdr, (9)

where f (Ydr|Yds;θ) is the conditional distribution of the vector of out-of-sample
values Ydr in domain d given the sampled values Yds in that domain and θ is the
vector of model parameters. Now replacing θ in (9) by an estimator θ̂ , we get the
empirical best (EB) estimator, δ̂ EB

d .

Under the nested error model (8), the distribution of Ydr|Yds is easy to derive.
First, we decompose Xd and Vd into sample and out-of-sample elements similarly
as we do with Yd , that is,

Yd =

(
Yds

Ydr

)
, Xd =

(
Xds

Xdr

)
, Vd =

(
Vds Vdsr

Vdrs Vdr

)
.

By the normality assumption, we have that Ydr|Yds
ind∼ N(µdr|s,Vdr|s), where the

conditional mean vector and covariance matrix are given by

µdr|s = Xdrβ + γdc(ȳdc− x̄T
dcβ )1Nd−nd , (10)

Vdr|s = σ
2
u (1− γd)1Nd−nd 1T

Nd−nd
+σ

2
e diagi∈rd

(k2
di). (11)

Here, γdc = σ2
u (σ

2
u +σ2

e /cd·)
−1, for cd· = ∑i∈sd

cdi with cdi = k−2
di , and ȳdc and x̄dc
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are weighted sample means obtained as

ȳdc =
1

cd·
∑
i∈sd

cdiYdi, x̄dc =
1

cd·
∑
i∈sd

cdixdi. (12)

For complex non-linear parameters δd = h(Yd), the expectation given in (9)
cannot be calculated analytically. In those cases, the EB estimator δ̂ EB

d is approxi-
mated by Monte Carlo. This requires to simulation of multivariate Normal vectors
Y(a)

dr of sizes Nd−nd , d = 1, . . . ,D, from the (estimated) conditional distribution of
Ydr|Yds and then to replication for a = 1, . . . ,A, which may be computationally un-
feasible. Simulation of very large multivariate Normal vectors Y(a)

dr can be avoided
by noting that the conditional covariance matrix Vdr|s, given by (11), corresponds

to the covariance matrix of a random vector Y(a)
dr generated from the model

Y(a)
dr = µdr|s + v(a)d 1Nd−nd + ε

(a)
dr , (13)

where v(a)d and ε
(a)
dr are independent and satisfy

v(a)d ∼ N(0,σ2
u (1− γd)) and ε

(a)
dr ∼ N(0Nd−nd ,σ

2
e diagi∈rd

(k2
di));

see Molina and Rao (2010). Using model (13), instead of generating a multivariate
normal vector Y(a)

dr of size Nd−nd , we just need to generate 1+Nd−nd independent

univariate normal variables v(a)d
ind∼ N(0,σ2

u (1− γd)) and ε
(a)
di

ind∼ N(0,σ2
e k2

di), for i ∈
rd . Then, we obtain the corresponding out-of-sample values Y (a)

di , i ∈ rd , from (13)
using as means the corresponding elements of µdr|s given by (10). Using the vector

Y(a)
dr generated from (13), we construct the census vector Y(a)

d = (Y′ds,(Y
(a)
dr )
′)′ and

calculate the parameter of interest δ
(a)
d = h(Y(a)

d ). For a non-sampled area d (i.e.,
with nd = 0), we generate Y(a)

dr from (13) with γdc = 0 and in this case Y(a)
d = Y(a)

dr .
The Monte Carlo approximation to the EB estimator (9) of δd = h(Yd) is then given
by

δ̂
EB
d ≈ 1

A

A

∑
a=1

h(Y(a)
d ). (14)

In particular, to estimate the FGT poverty indicator given in (1), Molina and Rao
(2010) assumed that Ydi = T (Edi) follow the nested error model (8), where Edi are
variables measuring welfare and T (·) is a one-to-one transformation. In terms of
the vector of transformed variables Yd = (Yd1, . . . ,YdNd )

′, the FGT poverty indicator
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can be expressed as

Fαd =
1

Nd

Nd

∑
i=1

(
z−T−1(Ydi)

z

)α

I(T−1(Ydi)< z) = hα(Yd), (15)

and the above EB method can be applied to the area parameter δd = hα(Yd).
In the case of complex parameters such as the FGT poverty indicators, analytic

approximations for the MSE are hard to derive. Molina and Rao (2010) obtained a
parametric boostrap MSE estimator following the bootstrap method for finite popu-
lations of González-Manteiga et al. (2008), see Molina and Rao (2010) for further
details.

Note that both ELL and EB methods require a survey data file containing the ob-
servations from the target variable and the auxiliary variables, that is, {(Ydi,xdi); i ∈
sd , d = 1, . . . ,D}, and a census containing the values of the same auxiliary vari-
ables for all the units in the population, that is, {xdi; i = 1, . . . ,Nd , d = 1, . . . ,D}.
The EB method requires additionally the identification of the set of out-of-sample
units r (or equivalently the sample units s) in the census P. Linking the survey
and the census files is not always possible in practice. However, typically the area
sample size nd is really small compared to the population size Nd . Then, we can
use the Census-EB estimator proposed by Correa, Molina and Rao (2012), and
obtained by generating in each Monte Carlo replicate the full census vector Yd

rather than only the vector of out-of-sample observations Ydr. For this, we apply
the Monte Carlo approximation (9) by generating Y(a)

d = µd|s + v(a)d 1Nd−nd + ε
(a)
d ,

where µd|s = Xdβ + γdc(ȳdc− x̄T
dcβ )1Nd and ε

(a)
d ∼ N(0Nd ,σ

2
e diagi=1,...,Nd

(k2
di)). If

the sampling fraction nd/Nd is negligible, the Census-EB estimator of δd = Fαd is
practically the same as the original EB estimator.

Good properties and drawbacks of the EB method are listed below.

Advantages:

• It is based on unit level data, which are richer than the area level data and uses
much larger sample size to fit the model.

• The EB method can be applied to estimate general indicators defined as func-
tions of the response variables Ydi.

• Best estimators are model-unbiased.

• They are optimal in terms of minimizing the model MSE for known values of
model parameters.

• EB estimates perform significantly better than ELL estimates when unex-
plained between-area variation is significant. For out-of-sample areas (with
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nd = 0), EB and ELL small area estimates are nearly the same. They are
nearly the same for all areas if there is no unexplained between-area variation
(σ2

u = 0).

• Once the model is fitted, estimates can be obtained at whatever subarea level.

Disadvantages:

• They are based on a model assumption. Hence, model checking is crucial.

• They are not approximately design-unbiased and can be seriously biased un-
der informative sampling.

• They can be severely affected by unit level outliers.

• Parametric bootstrap estimates of the MSE of EB estimators are computation-
ally intensive.

3.5. Hierarchical Bayes (HB) method

Computation of EB (and Census-EB) estimates supplemented with their MSE es-
timates is very intensive and might be unfeasible for very large populations or for
very complex indicators. Note that to approximate the EB estimate by Monte Carlo,
we need to construct a large number A of censuses Y(a), where each one might be of
huge size. Moreover, to obtain the parametric bootstrap MSE estimator, the Monte
Carlo approximation needs to be repeated for each bootstrap replicate. Seeking for
a computationally more efficient approach, Molina, Nandram and Rao (2014) de-
veloped the alternative hierarchical Bayes (HB) method for estimation of complex
non-linear parameters. This approach does not require the use of bootstrap for MSE
estimation because it provides samples from the posterior distribution, from which
posterior variances play the role of MSEs, and any other useful posterior summary
can be easily obtained.

The HB method is based on reparameterizing the nested error model (8) in terms
of the intraclass correlation coefficient ρ = σ2

u /(σ
2
u +σ2

e ) and considering priors for
the model parameters (β ,ρ,σ2

e ) that reflect lack of knowledge. Concretely, the HB
model is defined as

(i) Ydi|ud ,β ,σ
2
e

ind∼ N(x′diβ +ud ,σ
2
e k2

di), i = 1, . . . ,Nd ,

(ii) ud |ρ,σ2
e

iid∼ N
(

0,
ρ

1−ρ
σ

2
e

)
, d = 1, . . . ,D,

(iii) π(β ,ρ,σ2
e ) ∝

1
σ2

e
, ε ≤ ρ ≤ 1− ε, σ

2
e > 0,β ∈R p,
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where ε > 0 is chosen very small to reflect lack of knowledge. See the application
carried out by Molina, Nandram and Rao (2014), where inference was not sensitive
to a small change of ε .

The posterior distribution can be obtained in terms of posterior conditionals us-
ing the chain rule of probability as follows. First, note that under the HB approach,
the random effects u = (u1, . . . ,uD)

′ are regarded as additional parameters. Then,
the joint posterior pdf of the vector of parameters θ = (u′,β ′,σ2

e ,ρ)
′ given the sam-

ple values Ys is given by

π(u,β ,σ2
e ,ρ|Ys) = π1(u|β ,σ2

e ,ρ,Ys)π2(β |σ2
e ,ρ,Ys)π3(σ

2
e |ρ,Ys)π4(ρ|Ys), (16)

where the conditional pdfs π1, . . . ,π3 have known forms, but not π4. However, since
ρ is in a closed interval from (0,1), we can generate values from π4 using a grid
method, for more details see Molina, Nandram and Rao (2014). Samples from
θ = (u′,β ′,σ2

e ,ρ)
′ can then be generated directly from the posterior distribution in

(16), avoiding the use of Markov Chain Monte Carlo (MCMC) methods. Under
general conditions, a proper posterior distribution is guaranteed.

Given θ , population variables Ydi are all independent, satisfying

Ydi|θ
ind∼ N(x′diβ +ud ,σ

2
e k2

di), i = 1, . . . ,Nd , d = 1, . . . ,D. (17)

The posterior predictive density of Ydr is then given by

f (Ydr|Ys) =
∫

∏
i∈rd

f (Ydi|θ)π(θ |Ys)dθ .

Finally, the HB estimator of a domain parameter δd = h(Yd) is given by

δ̂
HB
d = EYdr(δd |Ys) =

∫
h(Yd) f (Ydr|Ys)dYdr. (18)

The HB estimator can be approximated by Monte Carlo. For this, we first gen-
erate samples from the posterior π(θ |Ys). We generate a value ρ(a) from π4(ρ|Ys)

using a grid method; then, a value σ
2(a)
e is generated from π3(σ

2
e |ρ(a),Ys); next

β
(a) is generated from π2(β |σ2(a)

e ,ρ(a),Ys) and, finally, u(a) is generated from
π1(u|β (a),σ

2(a)
e ,ρ(a),Ys). This process is repeated a large number A of times to

get a random sample θ
(a), a = 1, . . . ,A from π(θ |Ys). Now for each generated

value θ
(a) from π(θ |Ys), we generate the out-of-sample values {Y (a)

di , i ∈ rd} from
the distribution defined in (17). Thus, for each area d, we have generated an out-of-
sample vector Y(a)

dr = {Y (a)
di , i ∈ rd}, and we have also the available sample data Yds.

Putting them together, we construct the full population vector Y(a)
d = (Y′ds,(Y

(a)
dr )
′)′.
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Now using Y(a)
d , we compute the area parameter δ

(a)
d = h(Y(a)

d ). In the particular
case of estimating an FGT poverty indicator, we have δd = Fαd = hα(Yd) given in
(15). Then, in Monte Carlo replicate a, we calculate F(a)

αd = hα(Y
(a)
d ). Finally, the

HB estimator is approximated as

F̂HB
αd ≈

1
A

A

∑
a=1

F(a)
αd . (19)

Benefits and deficiencies of HB method are listed below.

Advantages:

• It is based on unit level data, which are richer than area level data and uses
much larger sample size to fit the model.

• HB method can be applied to estimate general indicators defined as function
of the model response variables Ydi.

• HB estimators are model-unbiased.

• HB estimators are optimal in terms of minimizing the posterior variance.

• EB and HB methods are expected to give practically the same point estimates,
see Molina, Nandram and Rao (2014). Thus, the proposed HB method has
good frequentist properties.

• Once the model is fitted, estimates can be obtained at any subarea level.

• The proposed HB approach does not require the use of MCMC methods
and therefore avoids the need of monitoring the convergence of Monte Carlo
chains.

• Bootstrap methods for MSE estimation are not needed. Therefore, total com-
putational time is considerably lower than in the EB method.

• Calculation of credible intervals or other posterior summaries is straightfor-
ward.

Disadvantages:

• It is based on model assumptions. Hence, model checking is crucial.

• HB estimators are not design-unbiased and can be seriously biased under in-
formative sampling.

• HB estimators can be severely affected by unit level outliers.

• HB method is not directly extendable to more complex models without losing
some of the mentioned advantages like avoiding MCMC.
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4. Simulation studies

This section illustrates some of the mentioned advantages and drawbacks of the con-
sidered poverty mapping methods through simulation studies. Concretely, we will
report results of simulations under three different scenarios: (i) Nested error model
with simple random sampling. (ii) Nested error model with informative sampling.
(iii) Nested error model with outliers.

Simulations were implemented in the statistical software environment R (R de-
velopment core team 2013) using the package lme4 (Bates et al. 2014), which fits
Gaussian linear and nonlinear mixed-effects models, and the package sae (Molina
and Marhuenda 2015), which contains functions for small area estimation, including
calculation of direct, FH and EB estimates along with their MSE estimates.

4.1. Nested error model with simple random sampling

We consider the same model-based simulation setup as in Molina, Nandram and Rao
(2014), where data are generated at the unit level following the nested error model
(8). However, here we also include FH estimators derived from the FH area level
model with the area means of the auxiliary variables as covariates. In addition, we
include ELL and Census-EB estimators. The population is composed of N = 20,000
units, distributed in D = 80 areas with Nd = 250 units in each area. We consider two
auxiliary variables X1 and X2 with known values for all the population units. Their
values are generated as xk,di ∼ Bern(pkd), k = 1,2, with success probabilities p1d =

0.3+ 0.5d/D and p2d = 0.2, d = 1, . . . ,D. Response variables Ydi are generated
from the nested error model (8) and the target variables are Edi = exp(Ydi). The
true values of the regression coefficients are β = (3,0.03,−0.04)′. Variances of
area effects and errors are taken as σ2

u = 0.152 and σ2
e = 0.52 respectively. The

poverty line is set to z= 12, which is approximately 0.6 times the median of {Edi; i=
1, . . . ,Nd , d = 1, . . . ,D} for a population generated as described before, which is
the official definition of poverty line used in the EU countries. We draw a sample
sd of size nd = 50, d = 1, . . . ,D, using sample random sampling (SRS) without
replacement, independently from each area d.

A total of L = 1,000 population vectors Y(`), ` = 1, . . . ,L, were generated
from the nested error model (8) with the mentioned values of model parameters
and auxiliary variables. For each Monte Carlo population ` = 1, . . . ,L, we calcu-
lated the true area poverty incidences and poverty gaps. Then, we selected the
sample s, which is kept fixed across Monte Carlo replicates. Using the sample
data {(Ydi,x1,di,x2,di); i ∈ sd ,d = 1, . . . ,D} and the population data on the auxil-
iary variables, we computed direct estimates F̂DIR

αd , FH, ELL, EB, Census-EB and
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HB estimates of poverty incidence (α = 0) and poverty gap (α = 1) for each area
d = 1 . . . ,D. FH, ELL and EB estimates were obtained using REML fitting method.

For the Monte Carlo population `, let F(`)
αd be the true poverty indicator for area d

and F̂(`)
αd be one of the estimates (direct, FH, ELL, EB, Census-EB or HB). Relative

bias (RB) and relative root mean squared error (RRMSE) of an estimator F̂αd are
approximated empirically as

RB(F̂αd) =
L−1

∑
L
`=1(F̂

(`)
αd −F(`)

αd )

L−1 ∑
L
`=1 F(`)

αd

, RRMSE(F̂αd) =

√
L−1 ∑

L
`=1(F̂

(`)
αd −F(`)

αd )
2

L−1 ∑
L
`=1 F(`)

αd

.

For each estimator F̂αd , the absolute RB (ARB) and the RRMSE are averaged across
areas as

ARBα = D−1
D

∑
d=1
|RB(F̂αd)|, RRMSEα = D−1

D

∑
d=1

RRMSE(F̂αd).

Figure 1 depicts percent RBs (left) and RRMSEs (right) of the estimators of
the domain poverty gaps F1d for each area d. EB and Census-EB estimates are not
shown in these plots because they are both practically equal to HB estimates and are
plotted separately in Figure 2. We can see in Figure 1 left that direct, ELL and HB
estimators are practically unbiased. In contrast, FH estimators display a substantial
negative bias. Concerning efficiency, Figure 1 right shows that HB estimators have
the smallest RRMSE whereas ELL estimators are the ones with the largest RRMSE.
Conclusions for the poverty incidence F0d are very similar.

Table 1 presents averages across areas of absolute RB and RRMSE of all the
estimators, for both poverty incidence and poverty gap. We see that, on average,
FH estimator presents a large absolute RB (over 6% for poverty incidence and close
to 15% for poverty gap), whereas EB, HB and Census-HB estimators have a very
small RB (< 1%). The latter estimators also achieve the smallest RRMSEs (slightly
over 20% for poverty incidence and over 25% for poverty gap). The largest RRMSE
is obtained by ELL estimator (over 58%). Note that both absolute RB and RRMSE
increase when estimating the poverty gap, because the poverty gap depends to a
greater extent on the extreme of the left tail of the income distribution, which is
more difficult to estimate correctly from a (finite) sample.

These results indicate that HB estimators are practically unbiased and clearly the
most efficient among the considered estimators when the nested error model holds
and the sample is drawn with SRS within each area. The bias of FH estimators is
due to the fact that they are attaching most of the weight to the regression-synthetic
component, which relies exactly on the model, but here data Ydi are generated from
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the unit level model (8) and the area means of the covariates X̄k,d = N−1
d ∑

Nd
i=1 xk,di

are not linearly related with the poverty indicators Fαd . Thus, FH model fails due to
non-linearity of the poverty indicators Fαd in the area level covariates X̄k,d , k = 1,2,
even if the unit level model holds exactly.
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Figure 1. Percent relative bias (left) and relative root MSE (right) of direct, FH, HB
and ELL estimators of poverty gap F1d for each area d under the nested error model
with simple random sampling.

Table 1. Averages across areas of percent ARB and RRMSE for direct, FH, HB,
EB, Census-EB and ELL estimators of poverty incidence F0d and poverty gap F1d ,
under the nested error model with simple random sampling.

Method Average ARB (%) Average RRMSE (%)
F0d F1d F0d F1d

Direct 0.99 1.26 28.53 36.33
FH 6.34 14.78 26.26 38.16
HB 0.48 0.65 20.15 25.43
EB 0.51 0.67 20.41 25.73

Census-EB 0.55 0.69 21.15 26.71
ELL 1.31 1.69 47.39 58.63

Figure 2 depicts percent RB (left) and RRMSE (right) of EB and Census-EB
estimates of the poverty gap F1d for each area d. Figure 2 left shows the great
similarity of EB and Census-EB estimates of F1d , even if sampling fractions in this
simulation study are not so small (nd/Nd = 1/5, d = 1, . . . ,D). See in Figure 2 right
and in Table 1 that the average RRMSE increase of the Census-EB estimator is in
this case less than 1%.

Next we study ELL estimator of the MSE of F̂ELL
αd . Figure 3 depicts the true

MSE of ELL estimators of the poverty gap F1d , labeled “True MSE ELL" and the
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Figure 2. Percent relative bias (left) and relative root MSE (right) of direct, FH, HB
and ELL estimators of poverty gap F1d for each area d under the nested error model
with simple random sampling.

means across simulations of ELL estimates of the MSE, labeled “MSE ELL", for
each area d. This figure shows that ELL estimates of MSE do not really track
the true MSEs for each area even if we have considered here random effects for the
areas in the model (i.e., sampling clusters equal to areas). In the case that clusters are
different from the areas, if we consider the original ELL method that includes only
cluster effects but area effects are significant, then ELL estimates might seriously
underestimate the MSE.

For EB estimator, the parametric bootstrap procedure proposed by Molina and
Rao (2010) approximates the true MSE reasonably well, see Molina and Rao (2010).
For HB estimator, posterior variance, approximated by Monte Carlo, is taken as
measure of uncertainty.

4.2. Nested error model with informative sampling

We consider the same setup as in the previous simulation study, with the same popu-
lation sizes, model parameters, auxiliary variables and poverty line. The only differ-
ence is that in this simulation study, samples are drawn with informative sampling.
When the sampling is informative, the probability of a sample depends on the val-
ues of the population vector Y. Thus, under this setup, the simulations need to
be performed with respect to the joint distribution of (Y,s); that is, in each Monte
Carlo replicate `, we draw a population vector Y(`) and, given Y(`), we draw a sam-
ple s(`). A total of L = 1000 population vectors Y(`), ` = 1, . . . ,L, are generated
from the true nested error model (8). Again, we consider that the target variables
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Figure 3. True MSE of ELL estimators of poverty gap F1d and mean across simu-
lations of ELL estimator of the MSE for each area d, under the nested error model
with simple random sampling.

are Edi = exp(Ydi). The sample s(`) is drawn by Poisson sampling, with inclusion
probabilities πd,i depending on a random variable Zdi that is correlated with the
unexplained part of Ydi, that is, the model errors edi. Thus, for each population
unit i from area d, we generate a Bernoulli random value Qdi ∼ Bern(πd,i), with
πd,i = b−1 exp(−aZdi), where a > 0, b > 0 and Zdi ∼ Gamma(τdi,θdi). To choose
the values of τdi and θdi, we consider two cases: low and high level of informative-
ness. In the first case, we take τdi = 15+ 0.5edi and θdi = 0.75+ 0.025edi, which
yield random values Zdi with a 20% correlation with the model errors edi. In the
second case, we take τdi = 22.5+ 7.5edi and θdi = 1.125+ 0.375edi, yielding Zdi

with a 80% correlation with edi, which represents a high level of informativeness.
Note that under informative sampling, the sample size is random because each unit
in the population comes to the sample depending on its random value Qdi. To make
this simulation study comparable with the one in previous section, we wish to have
a similar average area sample size as before. This is achieved approximately by
considering a = 0.05 and b = 2.5 when the informativeness level is low and taking
a = 0.02 and b = 4 when the informative level is high. With the sample s(`) from
each population, we compute the five estimators, namely direct, FH, EB, ELL and
HB estimators. We excluded here Census-EB estimators because of their similarity
with EB estimators.
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Figure 4 plots RBs (left) and RRMSEs (right) of the estimators of the poverty
gap F1d when the informativeness level is low. Again, EB estimator is excluded
because it provides nearly the same results as HB. For low level of informativeness,
Figure 4 left shows that the negative bias of the EBLUP based on the FH model,
observed in the simulation with SRS, still persists, while the rest of the estimators
are almost unbiased. HB estimator still presents the smallest relative MSE among
the considered estimators, and ELL estimator performs the worst in terms of relative
MSE among the considered estimators. For the poverty incidence F0d , conclusions
are similar. These conclusions are confirmed by the averages across areas shown
in Table 2 for both poverty incidence and poverty gap. On average, the direct es-
timator has the smallest absolute RB (about 0.7% for poverty incidence and 0.9%
for poverty gap), followed by EB and HB estimators with a bias below 1.4% for
both poverty incidence and gap, the smallest RRMSE is for EB estimator (less than
21% for poverty incidence and than 26% for poverty gap) and the largest for ELL
estimator (over 47% for poverty incidence and over 58% for poverty gap).

Figure 5 plots RB (left) and RRMSE (right) of the estimators of the poverty gap
F1d when the level of informativeness is large. In this case, Figure 5 left shows a
negative bias for the FH estimator and a large positive bias of HB and ELL estima-
tors. Looking at Figure 5 right, we can see that now direct and FH estimates, which
are calculated using the true inclusion probabilities, present the smallest RRMSE
among the considered estimators. Again, conclusions are similar for the poverty
incidence F0d . Table 3 lists the averages across areas of ARB and RRMSE for all
the considered estimators of the poverty incidence and poverty gap. In this case,
the direct estimator has the smallest average ARB (about 0.6% for poverty gap),
whereas the average RRMSE of ELL estimator is the largest (99.6%).

To summarize, EB and HB methods are not greatly affected under low level of
informativeness, measured in terms of correlation among the design variable used
in the inclusion probabilities and the response variable. When the degree of infor-
mativeness is high, these two methods are certainly affected because they do not
take into account the sampling design. The effect of informative sampling on FH
estimator seems to be smaller, and its negative bias is again due to a non-linearity
problem of FH model because data actually follows the nested error linear regres-
sion model for log income at the unit level. We are currently developing suitable
methods to handle informative sampling in the case of unit level models.

4.3. Nested error model with outliers

In this section, we carry out a simulation study under exactly the same conditions
as in Section 4.1, but generating the model errors edi from a mixture of normal
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Figure 4. Percent relative bias (left) and relative root MSE (right) of direct, FH, HB
and ELL estimators of poverty gap F1d for each area d under low informativeness.

Table 2. Averages across areas of percent ARB and RRMSE for direct, FH, HB,
EB and ELL estimators of incidence F0d and poverty gap F1d , under low informa-
tiveness.

Method Average ARB (%) Average RRMSE (%)
F0d F1d F0d F1d

Direct 0.74 0.91 71.69 38.92
FH 10.47 19.26 30.33 43.38
HB 1.10 1.38 20.29 35.63
EB 1.04 1.25 20.48 25.86

ELL 1.63 1.98 47.39 58.65

distributions with different variances in order to create outliers. Concretely, in this
simulation study, we generate model errors as edi ∼ (1−ε)N(0,σ2

e )+ε N(0,Rσ2
e ),

where ε is generated as ε ∼ Bern(p). We consider two fractions of outliers, p = 0.1
and p = 0.5, and two values for the factor R in the variance of outliers, namely
R= 10 and R= 100. Using the above mechanism to generate model errors, a total of
L = 1000 population vectors Y(`), i = 1, . . . ,L, were generated from the nested error
model (8). Then, we calculated true area poverty incidences and gaps. Note that the
outliers considered in this simulation study are not recording errors in the sample
data. They are actually representative outliers appearing in the population. Thus,
they are actual realizations of the distribution with heavier tails obtained from the
normal mixture, and true values of poverty indicators actually include the generated
outliers in the population. The sample is drawn by SRS within each area as in
Section 4.1, keeping the sample units s fixed across simulations. With each Monte
Carlo sample, direct, FH, EB, ELL and HB estimators were computed.
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Figure 5. Percent relative bias (left) and relative root MSE (right) of direct, FH, HB
and ELL estimators of poverty gap F1d for each area d under high informativeness.

Table 3. Averages across areas of percent ARB and RRMSE for direct, FH, HB,
EB and ELL estimators of incidence F0d and poverty gap F1d , under large informa-
tiveness.

Method Average ARB (%) Average RRMSE (%)
F0d F1d F0d F1d

Direct 0.59 0.65 23.62 25.69
FH 6.94 9.21 23.83 29.40
HB 61.64 76.95 66.05 84.95
EB 61.60 73.68 66.08 84.89

ELL 61.69 76.98 72.94 97.29

We report here results for the cases of less frequent mild outliers (p = 0.1 and
R = 10), and of more frequent and extreme outliers (p = 0.5 and R = 100). For
the first case, results for the poverty gap are plotted in Figure 6. Again, EB is
excluded in the plots because it provides similar results as HB. Figure 6 left and
right show that direct estimators are not practically affected by the outliers, which is
expected because this estimator does not rely on any model assumption. Similarly,
FH estimator is less affected by outliers because the observed negative bias is again
due to non-linearity problems. HB and ELL estimators show a moderate bias, but
still HB estimator achieves the lowest error in terms of RRMSE. Averages across
areas of ARB and RRMSE for all estimators of poverty incidence and poverty gap
are shown in Table 4. We can see that the bias of EB and HB estimators is small
(around 4% for poverty incidence and 5% for poverty gap), and the RRMSE has
increased only about 0.5% with respect to the case of no outliers (see Table 2) and
it is still acceptable (around 21% for poverty incidence and 26% for poverty gap).
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For the case of more frequent and extreme outliers (p = 0.5 and R = 100), Fig-
ure 7 left shows that in this case HB, and to a greater extent ELL estimators; present
a very large positive bias, see also Table 7 reporting averages across areas. Note that
the RRMSE of ELL estimator reaches 226.63% for the poverty gap. In this simula-
tion study, FH estimates perform better than in the previous simulation studies, and
this could be due to the fact that, since FH model is less correct when outliers are
present, the FH estimator is attaching more weight to the direct estimator, which
is practically unbiased. EB, HB and ELL estimators are severely biased when data
contains frequent extreme outliers, performing even worse than under high level of
informative sampling, but are not too much affected under rare and not so extreme
outliers. These methods are based on model assumptions and are not robust to strong
model misspecification when the true error distribution has very heavy tails as in the
mixture model considered here with p = 0.5 and R = 100. We are exploring estima-
tion methods for complex parameters that are robust to outliers. Note that previous
work on robust estimation, e.g. Sinha and Rao (2009), focused on estimating area
means only.
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Figure 6. Percent relative bias (left) and relative root MSE (right) of direct, FH,
HB and ELL estimators of poverty gap F1d for each area d under nested error model
with outliers (p = 0.01 and R = 10).

5. Conclusions

This paper reviews popular poverty mapping procedures focusing on practical as-
pects. Simulation studies compare these methods under three interesting scenarios
that show the good properties when assumptions hold and also the worse perfor-
mance when some assumptions are not satisfied. These simulation studies illustrate
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Table 4. Averages across areas of percent ARB and RRMSE for direct, FH, HB,
EB and ELL estimators of incidence F0d and poverty gap F1d , under under nested
error model with outliers (p = 0.01 and R = 10).

Method Average ARB (%) Average RRMSE (%)
F0d F1d F0d F1d

Direct 0.92 1.18 28.54 36.82
FH 6.16 14.67 26.10 37.55
HB 3.95 4.95 20.81 26.22
EB 3.88 4.79 20.99 26.42

ELL 4.93 6.14 46.65 56.52
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Figure 7. Percent relative bias (left) and relative root MSE (right) of direct, FH,
HB and ELL estimators of poverty gap F1d for each area d under nested error model
with outliers (p = 0.05 and R = 100)

that: (i) Even if aggregation protects against model failures in FH area level model,
the linearity assumption of the model fails when data follows a unit level model but
target parameters are nonlinear functions of the model responses. However, FH es-
timates are less affected by informative sampling and by symmetric representative
unit level outliers. (ii) EB and HB methods perform practically the same, and are the
best among the considered estimators when the nested error model with normality
holds and sampling is noninformative. They are not very much affected by mildly
informative sampling and small proportion of mild outliers, but might be severely
affected by highly informative sampling or severe outliers in large proportions. (iii)
Census-EB estimators of poverty indicators are practically the same as EB estima-
tors and avoid linking the survey and census data files. (iv) ELL method under
a nested error model with random area effects performs the worst in all scenarios
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Table 5. Averages across areas of percent ARB and RRMSE for direct, FH, HB, EB
and ELL estimators of incidence F0d and poverty gap F1d , under nested error model
with outliers (p = 0.05 and R = 100).

Method Average ARB (%) Average RRMSE (%)
F0d F1d F0d F1d

Direct 0.96 1.20 29.68 41.99
FH 5.66 14.33 26.65 36.10
HB 74.13 161.73 86.87 180.88
EB 74.11 161.59 86.95 180.81

ELL 92.64 201.97 111.32 226.63

because it does not account for unexplained between-area variation.
Several relaxations of the normality assumption in the EB method have been

recently studied. Diallo and Rao (2004) derived EB estimators of poverty indica-
tors assuming the family of skew normal (SN) distributions for the random effects
and/or the errors, which includes the normal distribution as a particular case. Their
results indicate that the EB method based on normality is robust to deviations from
normality of ud provided edi remains normal. On the other hand, under SN errors
edi, normality-based EB estimators can induce significant bias and may not perform
well compared to SN-based EB estimators. Van der Weide and Elbers (2014) stud-
ied normal mixture models on the area effects ud and the errors edi. Their results
are in agreement with Diallo and Rao (2014) in the sense that the normality-based
EB method is robust provided edi remains normal. Graf, Marín and Molina (2015)
have also extended the EB method to the generalized Beta distribution of the sec-
ond kind (GB2), which models income data adequately. They have also shown that
using the EB method based on the GB2 distribution leads to clear efficiency gains
when the distribution of log income deviates from normality, whereas it does not
lose efficiency when log incomes follow the nested error model with normality.
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ABSTRACT

This article considers a robust hierarchical Bayesian approach to deal with random
effects of small area means when some of these effects assume extreme values, re-
sulting in outliers. In the presence of outliers, the standard Fay-Herriot model, used
for modeling area-level data, under normality assumptions of random effects may
overestimate the random effects variance, thus providing less than ideal shrinkage
towards the synthetic regression predictions and inhibiting the borrowing of infor-
mation. Even a small number of substantive outliers of random effects results in
a large estimate of the random effects variance in the Fay-Herriot model, thereby
achieving little shrinkage to the synthetic part of the model or little reduction in
the posterior variance associated with the regular Bayes estimator for any of the
small areas. While the scale mixture of normal distributions with a known mixing
distribution for the random effects has been found to be effective in the presence
of outliers, the solution depends on the mixing distribution. As a possible alter-
native solution to the problem, a two-component normal mixture model has been
proposed, based on non-informative priors on the model variance parameters, re-
gression coefficients and the mixing probability. Data analysis and simulation stud-
ies based on real, simulated and synthetic data show an advantage of the proposed
method over the standard Bayesian Fay-Herriot solution derived under normality
of random effects.
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1. Introduction

Small area estimation methods are becoming increasingly popular among survey

practitioners. Reliable small area estimates are often solicited by policy makers

from both government and private sectors for planning, marketing and decision

making. In order to meet the growing demand for reliable small area estimates, re-

searchers have developed methods that combine information from small areas and

other related variables. Ghosh and Rao (1994), Rao (2003), Jiang and Lahiri (2006),

Datta (2009) and Pfeffermann (2013) provided a comprehensive review of the re-

search in small area estimation.

The landmark paper by Fay and Herriot (1979) used the empirical Bayes (EB) ap-

proach (see, for example, Efron and Morris, 1973) and popularized model-based

small area estimation methods. Denoting the design-based direct survey estimator

of the ith small area by Yi and its auxiliary variable by xi, an r× 1 vector, Fay and

Herriot (1979) introduced the model

Yi = θi + ei, θi = xT
i β + vi, i = 1, . . . ,m. (1.1)

Here θi is a summary measure of the characteristic to be estimated for the ith small

area, ei is the sampling error of the estimator Yi, and the random effects vi denote

the model error measuring the departure of θi from its linear regression on xi. It is

assumed that e1, . . . ,em are independent and normally distributed with ei∼N(0,Di),

and are independent of v1, . . . ,vm, which are i.i.d. N(0,A). The sampling variances

Di’s are treated as known, but the model parameters β and A are unknown. Random

effects vi’s are also known as small area effects.

In this paper we focus on hierarchical Bayes (HB) methods for area-level models.

The classical area-level Fay-Herriot model was primarily developed as a frequentist

model, which was later given a Bayesian formulation (Rao 2003; Datta et al. 2005).

Estimators obtained from the Fay-Herriot model are shrinkage estimators, i.e., a

weighted average of the direct estimator and the model-based synthetic estimator,

and these weights depend on the model assumption. Datta and Ghosh (2012) gave

an extensive review of shrinkage estimation in the small area estimation context.

Shrinkage estimators are primarily constructed to improve standard estimators. For

instance, in the small area context model based shrinkage estimators are constructed
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to improve the precision of direct estimators such as the sample mean or the Horvitz-

Thompson estimator. Datta and Lahiri (1995) discussed how outliers can affect

shrinkage estimators, claiming that even a single outlier may lead all the small area

estimates to collapse to their corresponding direct estimates. This phenomenon was

also mentioned in the context of estimation of multiple normal means under the

assumption of an exchangeable normal prior (cf. Efron and Morris 1971, Stein

1981, and Angers and Berger 1991). One or more substantive outliers considerably

inflate the standard estimator of model variance.

An overestimation of model variance due to one or more substantive outliers prac-

tically results in no shrinkage of any of the direct estimates of the small area means

to the synthetic regression estimator. This also limits the reduction in the posterior

variances of the model-based estimates. To rectify this problem, following the work

of Angers and Berger (1991), who used a Cauchy distribution for the small area

means θi, Datta and Lahiri (1995) recommended a broader class of heavy-tailed dis-

tributions through a scale mixture of normal distributions. They showed that under

these assumptions, in the presence of substantive outliers, estimators corresponding

to the outlying areas converge to their corresponding direct estimators but leave the

non-outlying areas less affected. One difficulty with the last method is that the mix-

ing distribution for the scale parameter is considered to be known. For example, one

can use t-distribution for random effects, as in Xie et al. (2007). However, in the

absence of any information regarding the degrees of freedom, one needs to specify

a prior. Xie et al. (2007) assumed a gamma prior for the degrees of freedom. The

hyperparameters involved in this gamma distribution need to be specified. Bell and

Huang (2006) argued that, under practical circumstances, limited information is ob-

tained from the data regarding the degrees of freedom, and instead they used several

fixed values for the degrees of freedom.

In order to avoid specifying the mixing distribution in the previous paragraph, in

this paper we propose a two-component normal mixture distribution for the random

small area effects. Our model accommodates means for outlying areas to come

from the distribution with a larger variance. This is a simple extension of the Fay-

Herriot model with a contaminated random effects distribution with possibly small

proportion of areas having a larger model variance. Contaminated models have

been extensively used in empirical evaluations of the robust empirical best linear
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unbiased prediction (EBLUP) approach of Sinha and Rao (2009). We consider an

HB approach by assigning non-subjective priors to the parameters involved in the

model. Some components of these priors are improper, hence we provide sufficient

conditions for the posterior distribution to be proper.

In a recent article, Datta et al. (2011) demonstrated that in the presence of good

covariates xi, the variability of the small area means θi may be accounted for well

by xi, and including a random effects vi in the model (1.1) may be unnecessary.

These authors test a null hypothesis of no random effects in the small area model

and if it is not rejected, they propose more accurate synthetic estimators for the

small area means. In a more recent article, Datta and Mandal (2015) argued that

even if the null hypothesis was rejected in this case, it would be reasonable to expect

only a small fraction of the small areas means would not be adequately explained

by the covariates, and only these areas would require a random component to the

regression model.

Using the HB approach, Datta and Mandal (2015) considered a “spike and slab”

distribution for the random small area effects in order to propose a flexible balance

between the Fay and Herriot (1979) and Datta et al. (2011) models. However, it

is often difficult to find reliable covariates that would describe the response well,

particularly, if the number of small areas is large. For such datasets, not only the

test proposed by Datta et al. (2011) would suggest the inclusion of the small area

effects, but also the model proposed by Datta and Mandal (2015) would estimate the

probability of the existence of random effects as very high. This would effectively

suggest the Fay-Herriot model, but, in reality, only a small proportion of small areas

may not be adequately explained by a model with one single A. This would result in

an overestimation of A, thereby resulting in a poor fit, particularly when the number

of small areas m is large. Even if most of the small areas would require a random

effects term in the regression model, it is more likely that only a small proportion of

small areas would need a bigger value of A, and a smaller value of the same would be

sufficient for other areas. In this paper, we assume that v1, . . . ,vm are independently

distributed with mean 0 and a two-component mixture of normal distributions with

variance either A1 or A2(> A1). This model is potentially useful for handling large

outliers in small area means.

Bell and Huang (2006) presented an insightful discussion about using a t-distribution



STATISTICS IN TRANSITION new series and SURVEY METHODOLOGY 71

with a known d.f. to handle outliers in the Fay-Herriot model. The theoretical re-

gression residuals from (1.1) consist of the sum of the sampling error and the model

error, which are not individually observable. Bell and Huang (2006) argued that a

residual may be an outlier, either due to the sampling error or the model error. It

is difficult to distinguish between the scenarios of the sampling error outlier or the

model error outlier, since the data used in fitting the model (1.1) cannot readily dis-

entangle the two cases. They explained that the consequences of these two types of

outliers are quite different. If the model error vi is an outlier for some areas, then the

regression model (or synthetic estimation) is not good for these areas. In that case,

the direct estimator Yi should be used as the small area estimator. Datta and Lahiri

(1995) considered this case using a scale mixture of normal distribution. An alter-

native to this approach is proposed in the present article through a two-component

normal mixture. Bell and Huang (2006) noted that, in the presence of a model out-

lier, if the direct estimator also has large variability, then no satisfactory solution

exists. On the other hand, if the sampling error ei is an outlier due to an under-

estimation of the variance Di, then the direct estimator Yi is not reliable; Bell and

Huang (2006) argued that the “synthetic estimator” xT
i β may be used for prediction.

To address this issue, they proposed a t-distribution for the sampling distribution.

For further discussion, we refer to this article.

There is a substantive literature on the frequentist approach for the robust estimation

of small area means in the presence of outliers. Ghosh et al. (2008) considered the

robust empirical Bayes estimation of small area means for area level model. They

used the Huber’s ψ-function to limit the influence of outliers. For unit level models

Sinha and Rao (2009) and Chambers et al. (2014) proposed a robust modification of

EBLUPs of the finite population means of small areas. They also used the Huber’s

ψ-function to limit the impact of outlier observations on the estimators of model

parameters and the best linear unbiased predictors. While Sinha and Rao (2009)

provided robust projective EBLUPs (in the terminology of Chambers et al. (2014))

of the finite population small area means, the latter group of authors discussed the

limitation of such predictors in terms of bias, and also proposed robust predictive

EBLUPs to remedy this concern.

This paper is organized as follows. In Section 2 we describe the proposed model

and discuss some properties of our new shrinkage estimators. In Section 3 we illus-
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trate our method to estimate U.S. poverty rates for 3141 counties, based on 5-year

estimates from the American Community Survey. The performance of the model,

in comparison with the traditional Fay-Herriot model, is discussed in Section 4 and

Section 5. Section 6 provides a concluding discussion. A detailed proof of the

propriety of the posterior distribution is moved to the Appendix.

2. Two-component normal mixture model

Fay and Herriot (1979) proposed a model which has been extensively used in many

small area estimation applications to provide reliable estimates of poverty and in-

come measures. While for regular data the model successfully produces accurate

shrinkage estimators of small area means, it breaks down in the presence of sub-

stantial outliers among small area means. In order to account for the outliers, we

consider a two-component normal mixture extension of the Fay-Herriot model. This

model is given by

yi = θi + ei, θi = xT
i β +(1−δi)v1i +δiv2i, i = 1, . . . ,m, (2.1)

where ei, δi, v1i, v2i are independently distributed with P(δi = 1|p) = 1− p, v1i ∼
N(0,A1) and v2i ∼ N(0,A2). As in (1.1), β is an r× 1 vector of regression param-

eters, and the sampling errors e1, . . . ,em are independently normally distributed. To

complete our HB structure, we consider the following class of priors,

π(β ,A1,A2, p) = π
∗(A1,A2) ∝ A−α1

1 A−α2
2 I(0 < A1 < A2 < ∞). (2.2)

We use a uniform prior on the regression parameter β and the mixing proportion

p. For the prior on the variance parameters, we choose α1 < 1 < α2 suitably, and

we discuss the permissible choices of the values of α1 and α2 later. We impose the

restriction A1 <A2, so that we do not have a label switching problem leading to non-

identifiability. The area-specific random effects corresponding to the outlying areas

in the model are assumed to follow a normal distribution with larger variance, which

remains the motivation behind imposing such a restriction. While for the parameter

β common to all the components of the mixture model, an improper uniform prior

is reasonable, the prior for A1 and A2, which are not common in all the components

of the mixing distributions, is required to be at least partially proper. By partially
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proper we mean that while the marginals are improper, conditional priors for A2

given A1, and A1 given A2 are proper. For this to hold for our class of priors for

A1,A2, it is necessary and sufficient that α1 < 1 < α2. A partially proper prior is

required for the parameters that are not common to all components of a Bayesian

mixture model (cf. Scott and Berger, 2006).

Since the Bayesian model involves improper priors, in Theorem 2.1 below we pro-

vide sufficient conditions that ensure the resulting posterior distribution from the

proposed model will be proper. A detailed proof of Theorem 2.1 is given in Sec-

tion 6.

Theorem 2.1 The resulting posterior distribution from model (2.1) and the prior in

(2.2) will be proper if (a) m > r+2(2−α1−α2) and (b) 2−α1−α2 > 0.

The sufficient conditions in Theorem 2.1 provide a set of permissible values for α1

and α2. In conjunction with the condition 2−α1−α2 > 0, the condition α2 > 1

implies α1 < 1. We noted earlier that the last two conditions are necessary to elicit

partially proper priors. The special case α1 = 0 is feasible, which corresponds to a

uniform prior, provided 1 < α2 < 2. However, it is not possible to assign a uniform

prior on A2. If α1 =
1
2 , then 1 < α2 <

3
2 . Also, for mixture models, Jeffreys’ prior

has no closed-form expression to work with.

Our choice of a prior for the mixing parameter p is Uniform(0,1). We can modify

this prior if subjective information is available. If past experience in an application

suggests any information regarding the proportion of the outlying areas, it can be

incorporated in the model by modifying the prior for p. Sufficient conditions for

the propriety of the posterior density will remain unchanged. For instance, if the

model is modified with the assumption that p follows a known Beta distribution,

the sufficient conditions provided in Theorem 2.1 will remain intact.

It is well-known that even a single substantial outlier will collapse shrinkage esti-

mators of all θi’s based on the model (1.1) to the direct estimators yi’s (see Dey

and Berger, 1983; Stein, 1981). As a result, model-based estimators will fail to

borrow strength from other small areas. To protect against this odd behaviour,

Angers and Berger (1991), and Datta and Lahiri (1995) suggested a robust shrinkage
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model. These authors used a suitable scale mixture of normal distributions to model

a long-tail distribution of the θ ’s. These methods assume the knowledge of the

scale mixing distribution, which may not be available. The purpose of our mixture

model proposed in (2.1) is to provide an alternative solution that does not require

the knowledge of the mixing distribution and to facilitate borrowing information

among non-outlying observations in the presence of some substantive outliers.

Below we discuss a heuristic comparison of the shrinkage property of the Bayes es-

timators of θi under the Fay-Herriot model and our proposed model, in the presence

of substantial outliers. For the Fay-Herriot model, given the values of the parameters

β and A, an estimator of θi is

θ
FH
i = yi−

Di

Di +A
(yi− xT

i β ), i = 1, . . . ,m. (2.3)

In the presence of outliers, the frequentist estimators of A will be large, and the

posterior density of A will have a long right tail, which will also result in a large

Bayesian estimator of A. Consequently, an estimate of the shrinkage coefficient

Di/(Di+A) will be rather small, and the Bayes or the EB estimator of θi will borrow

little from its synthetic regression prediction and it will collapse to direct estimator

yi for all i.

We now argue that the proposed mixture model is more flexible to retain shrinkage

of the non-outlying observations in the presence of outliers. Let E(θi|β ,A1,A2, p,y)

= θ Mix
i . Using iterated expectation E(θi|β ,A1,A2, p,y) = E[E(θi|β ,A1,A2,δi, p,y)|

β , A1,A2, p,y], and after noting that E(θi|β ,A1,A2,δi, p,y)=
DixT

i β +A1+δiyi

Di +A1+δi

, p̃i =

P(δi = 0|β ,A1,A2, p,y), we get

θ
Mix
i = yi−

[(
Di

Di +A1

)
p̃i +

(
Di

Di +A2

)
(1− p̃i)

]
(yi− xT

i β ), (2.4)

where

p̃i =

p

(Di+A1)
1
2

exp
{
−1

2
(yi−xT

i β )2

(Di+A1)

}
p

(Di+A1)
1
2

exp
{
−1

2
(yi−xT

i β )2

(Di+A1)

}
+ (1−p)

(Di+A2)
1
2

exp
{
−1

2
(yi−xT

i β )2

(Di+A2)

} , (2.5)

for i = 1, . . . ,m. In the presence of substantially large outliers, (yi− xT
i β )2 and A2
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are expected to be high, hence P(δi = 0|β ,A1,A2, p,yi) ≈ 0. This will result in the

second shrinkage term within square brackets in (2.4) to be dominant. However,

since the posterior distribution of A2 has a long tail, the shrinkage coefficient asso-

ciated with the second component will be small and θ Mix
i ≈ yi, i.e., if the ith area is

outlying then the small area estimator based on this model will be very close to its

direct estimator. On the other hand, for any non-outlying areas p̃i will be away from

0, and their shrinkages will be less impacted by the outliers.

3. Data Analysis

We illustrate our proposed methodology by analysing a real data obtained from the

“American Fact Finder” website maintained by the US Census Bureau. The data

set contains 5-year ACS estimates of the overall poverty rates for 3141 US coun-

ties along with their associated design-based standard errors. The county identifiers

are not available for confidentiality reasons. In order to improve direct design-

based estimates, government agencies implement state-of-the-art small area estima-

tion methods to produce model-based estimates using auxiliary data. For poverty

estimation, the domain-level tax data are typically used as auxiliary information.

However, tax data are not available for public use, due to legal restrictions. In our

analysis we use the foodstamp participation rate as our only auxiliary variable (the

correlation between the foodstamp participation rate and the overall poverty rate is

0.81). Initially we fit the Fay-Herriot model (1.1) with the restricted maximum like-

lihood method (REML) as well as the hierarchical Bayesian (HB) method, assuming

flat priors for regression and variance parameter. The REML and Bayes estimates

of the model parameters are very close: β̂ REML = (0.056,0.634)T , ÂREML = 0.0009

and β̂ Bayes = (0.051,0.634)T , ÂBayes = 0.0009.

We have applied the proposed method to this data set and report the results in Ta-

ble 1. Our choices of α1 and α2 are 0.3 and 1.3 respectively. We have also performed

further analysis with other choices of α1 and α2 within the feasible range, but the

results were not considerably different. From Table 1, we see that the posterior

mean of A2(= 0.00619) is almost ten times larger than that of A1(= 0.00054). In ad-

dition, the estimate p̂ = 0.07 indicates that there are about 7% of small areas which

have much larger area specific variability compared to the majority. The outlying
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Figure 1: Analysis of the American Community Survey data

areas can be identified by computing the Bayes estimates of posterior probabilities

P(δi = 1|y). We plot the estimates of these probabilities for each area in Figure 1.

It shows that although most areas have low probabilities of having high random ef-

fects, some of them have higher chances of having a large variability in the model

error or the random small area effects. According to our analysis, approximately 7%

(221 out of 3141) of small areas have the posterior probability P(δi = 1|y) > 0.15,

and approximately 1.3% (40 out of 3141) of small areas have the posterior proba-

bility P(δi = 1|y)> 0.9.

4. Exploration of the shrinkage coefficients

We compare the shrinkage coefficients resulting from the proposed method with

those resulting from the standard Fay-Herriot model. By simulations we demon-

strate that the proposed method usually provides better shrinkage than the Fay-

Herriot method in the presence of outliers in the data. On the other hand, simu-

lated data from the standard Fay-Herriot model yield shrinkage coefficients based

on the proposed model that are very similar to those based on the Fay-Herriot model.
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Table 1: HB estimates of model parameters (for the ACS county level poverty rates
data)

Posterior Posterior Posterior Quantiles
Parameter Mean sd 2.5% Median 97.5%

β1 0.0465 0.0013 0.0440 0.0465 0.0491
β2 0.6605 0.0075 0.6459 0.6607 0.6748
A1 0.00054 0.00003 0.00049 0.00054 0.00059
A2 0.00619 0.00103 0.00454 0.00609 0.00854
p 0.0725 0.0237 0.0470 0.0704 0.1037

These two simulations, presented in Figure 2 essentially show the robustness of the

proposed method to outliers.

We mentioned in Section 2 that the proposed method is expected to provide better

overall shrinkage than Fay-Herriot method in the presence of outliers. In order to

demonstrate this property of the model, we conduct the following simulations. We

replace the direct estimates of the first 10% of small areas of the data by simulated

values and retain the rest of the data set intact. The purpose is to artificially con-

taminate the data set. We generate the direct estimates of the first 10% of small

areas from the model (1.1). We use the sampling variances of these areas to gener-

ate the corresponding sampling errors. We use the estimated regression parameters

β = (0.06,0.6)T and model variance 0.0009 obtained from the Fay-Herriot analysis

of the original data, using the Prasad-Rao method. We use these model parameter

values and the values of the auxiliary variables from these 10% of small areas to

retain the mean structure and variability of the small area means which are nearly

similar to the original population. We introduce outliers through the use of a heavy

tail distribution or large model variance for random effects. Random small area ef-

fects are generated from (a) vi ∼ t1, (b) vi ∼ t2, (c) vi ∼ t3, with proper scaling for

each and (d) vi ∼ N(0,52×a2). Note that t1 distribution is the Cauchy distribution

which does not have a variance (indeed it does not have a mean either). We rescale

the draws from t1, t2 and t3, multiplying them by the adjusting factor,
N0.75

T d f
0.75

a, where

N0.75 and T d f
0.75 are the 75th percentile of N(0,12) and t (for a specified df) respec-

tively. By multiplying the draws by this adjusting factor, we intend to match the
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inter-quartile range of draws from the t-distribution to the inter-quartile range of a

N(0,a2) distribution. Since the Prasad-Rao estimate of the random effects variance

based on the original data is 0.0009, we choose a2 = 0.0009 in order to maintain

consistency.
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Figure 2: Boxplots of the estimated shrinkage coefficients for two methods. In
plots (a)−(d), data are partially simulated for some small areas by drawing random
effects from (a) t1, (b) t2, (c) t3, (each of (a)−(c) scale adjusted) and (d) N(0,52×
(0.03)2). In plot (e), we fully simulate data for all areas by drawing random effects
from N(0,(0.03)2).

We apply the proposed method, as well as the Fay-Herriot method, and compare the

estimates of shrinkage coefficients in Figures 2 and 3. We see from Figure 3 that

when we partially contaminate the data set using (a) re-scaled t1 (Cauchy) and (d)

N(0,52× (0.03)2), the overall shrinkage obtained from the proposed model is con-

siderably higher than the overall shrinkage obtained from the regular Fay-Herriot

method. This result shows the flexibility of the proposed model in borrowing in-

formation from other areas when outliers in the random effects are present. Panels

(b), (c) and (e) of Figure 2 show that the proposed method performs similarly to the

Fay-Herriot method when the departure of the random effects distribution from the

normal is moderate or none.
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Figure 3: Histograms of the estimated shrinkage coefficients of the two methods
when the data are partially simulated by drawing random effects from (a) t1, (b) t2,
(c) t3 (each of (a)−(c) scale adjusted), and (d) N(0,52× (0.03)2)
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5. Performance of the proposed method

In order to evaluate the performance of the proposed model, described in Section 2,

we conduct a simulation study. This analysis is based on the simulated data sets

generated under different settings. For each m = 100, 500 and 1000, we generated

100 data sets. Here we set r = 2, x = (1,x1)
T and generate m copies of x1 from

N(10,(
√

2)2). For each choice of m, the set of covariates is generated exactly once

and used for all 100 data sets. Our choice of β is β = (20,1)T . The sampling error

ei’s are generated from N(0,Di), i = 1, . . . ,m, where Di’s are from the set {0.5, 1,

1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}, and each value in the set is allocated to the same

number of small areas. Random effects in model (1.1) are generated under three

different settings:

vi ∼ N(0,12), (5.1)

vi ∼ (1−δi)N(0,12)+δiN(0,52), and (5.2)

vi ∼ t3, (5.3)

where i = 1, . . . ,m. For the normal-mixture setup (5.2), we set δi = 1 for each i

multiple of 5 and keep the rest of the δi = 0, the simulated data sets contain 20%

of observations from the normal distribution with a variance of 25. Based on the

generated set of vi’s , we compute both the θi’s and yi’s by (1.1). For each of 100

simulated data sets for each setting, we predict θi’s based on the Fay-Herriot model

and the proposed area-level normal-mixture model. We measure the performance of

each prediction method by computing the (empirical) mean squared error (MSE)=
1
m

m
∑

i=1
(θi− θ̂i)

2, the mean absolute error (MAE)= 1
m

m
∑

i=1
|θi− θ̂i|, the mean relative

squared error (MRSE)= 1
m

m
∑

i=1

(θi−θ̂i)
2

θ 2
i

and the mean relative absolute error (MRAE)=

1
m

m
∑

i=1

|θi−θ̂i|
θi

, where θi’s are true and θ̂i’s are estimated small area means (for our

simulation setup, all the θi’s are positive). These empirical deviation measures are

typically used in the small area estimation literature to compare the accuracy of

various estimation methods (Rao, 2003). For each simulated dataset, we compute

MSE, MAE, MRAE and MRSE for two different methods and report the average

values based on all simulated data sets. The results of the simulation study are

presented in Tables 2 and 3. In Table 2 we report the MSE and MAE and in Figure 4
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we plot the MRAE and MRSE based on the overall simulation study. Table 3 shows

a more detailed result when the vi’s are drawn according to equation (5.2). From

Table 3 we can compare the performance of the two prediction methods for outlying

areas (random effects drawn from N(0,52)) and non-outlying areas (random effects

drawn from N(0,12)), separately. The simulation results indicate that the proposed

method tends to perform better than the Fay-Herriot method when the possibility of

the presence of outliers is high, and performs similarly otherwise.

Table 2: Comparison of the methods based on the simulated MSE and MAE of
prediction. The results are based on 100 simulated data sets

m=100 m=500 m=1000
Scenario Proposed FH Proposed FH Proposed FH

(5.1) Normal
MSE 0.72 0.71 0.69 0.69 0.68 0.68
MAE 0.67 0.67 0.66 0.66 0.66 0.65

(5.2) Mixture
MSE 1.48 1.75 1.49 1.81 1.30 1.87
MAE 0.86 1.01 0.85 0.98 0.84 1.04

(5.3) t3
MSE 1.14 1.27 1.01 1.20 1.14 1.30
MAE 0.83 0.84 0.79 0.81 0.80 0.84
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Figure 4: (a) The mean relative squared error (MRSE) and (b) the mean relative
absolute error (MRAE) based on 100 simulated data sets; A dotted line for the Fay-
Herriot method and a solid line for the proposed method.
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Table 3: Comparison of the methods based on the simulated MSE, MAE, MRSE
and MRAE of prediction. The results are based on 100 simulated data sets. The
performance of the methods is compared separately for outlying and non-outlying
areas based on the simulation design.

Scenario (5.2) Mixture
m=100 m=500 m=1000

Proposed FH Proposed FH Proposed FH

MSE
A1 = 12 0.90 1.26 0.80 1.06 0.80 1.32
A2 = 52 3.39 3.69 4.25 4.80 3.28 4.03

MAE
A1 = 12 0.73 0.88 0.69 0.82 0.70 0.91
A2 = 52 1.43 1.47 1.49 1.61 1.39 1.59

100×MRSE
A1 = 12 0.10 0.14 0.09 0.12 0.09 0.15
A2 = 52 0.43 0.50 0.53 0.56 0.44 0.61

10×MRAE
A1 = 12 0.25 0.30 0.23 0.27 0.24 0.30
A2 = 52 0.50 0.52 0.51 0.54 0.49 0.57

6. Discussion

In this paper, we propose a robust alternative to the Fay-Herriot model. The pro-

posed hierarchical Bayesian estimation procedure is straightforward. Another ro-

bust alternative is a t-distribution for the random effects, which requires information

regarding the degrees of freedom. Xie et al. (2007) proposed a method to estimate

the degrees of freedom. However, Bell and Huang pointed out that only a very lim-

ited information could be extracted from the data regarding the degrees of freedom

parameter. We propose a method based on non-informative priors for the param-

eters. We provide sufficient conditions for the propriety of the resulting posterior

distributions.

Model-based small area estimates depend on the accuracy of the underlying model

assumptions. Larger values of the area specific random effects may be caused by

a poor choice of the linking model or the lack of predictive quality of the auxil-

iary variables. If the model-based estimates of the area specific random effects are

significantly larger for some areas compared to the other areas, it is probably mean-

ingful to retain the direct estimates instead of the model-based estimates for those

areas to avoid possible inaccuracy. Nevertheless, we should be cautious in this rec-

ommendation if there is any indication that the sampling variance is underestimated.
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Datta and Lahiri (1995) recommended heavy-tailed priors for random effects by

emphasizing the fact that estimators obtained by using these priors were similar

to direct estimators for the areas with extreme observations. However, the estima-

tors for non-outlying areas should shrink direct estimators more towards synthetic

estimators. Also, the magnitude of this shrinkage may depend on the quality of

the auxiliary information. While for an outlying observation our model limits the

shrinkage of the Bayes predictor to the synthetic estimator, for non-outlying ob-

servations it enables the Bayes predictors to retain the shrinkage to the synthetic

estimator when the regression model provides a good fit.
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Appendix

Gibbs sampling for the proposed model

In order to apply our model, we use Gibbs sampling. We derive the set of full

conditional distributions from the posterior joint density of θ = (θ1, . . . ,θm)
T , β =

(β1, . . . ,βr)
T , δ = (δ1, . . . ,δm)

T , A1, A2 and p, which is given by

π(θ ,β ,A1,A2,δ , p|y) ∝

{
m

∏
i=1

exp
{
−(yi−θi)

2

2Di

}} m

∏
i=1

[
pδi(1− p)1−δi

{
1√
A1
× exp

{
−(θi− xT

i β )2

2A1

}}δi

×
{

1√
A2
× exp

{
−(θi− xT

i β )2

2A2

}}1−δi ]
×A−α1

1 A−α2
2 × I(0 < A1 < A2). (6.1)

From (6.1), we get the following full conditional distributions:

(I) θi|β ,A1,A2,δ , p,y ind∼ N
(DixT

i β +A2−δiyi

Di +A2−δi

,
DiA2−δi

Di +A2−δi

)
, i = 1, . . . ,m;

(II) β |θ ,A1,A2,δ , p,y∼ N
(

G−1
[

m
∑

i=1
A−1

2−δi
xiθi

]
,G−1

)
, where G is given by

m
∑

i=1
A−1

2−δi
xixT

i ;

(III) p|θ ,β ,A1,A2,δ ,y∼ Beta
(

m
∑

i=1
δi +1,m−

m
∑

i=1
δi +1

)
;

(IV) A1|A2,θ ,β ,δ , p,y has the pdf f1(A1), where,

f1(A1) ∝ A−(α1+∑
m
i=1

δi
2 )

1 exp
{
−

m
∑

i=1

δi(θi− xT
i β )2

2A1

}
I(A1 < A2),

(V) A2|A1,θ ,β ,δ , p,y has the pdf f2(A2), where,

f2(A2) ∝ A−(α2+∑
m
i=1

(1−δi)
2 )

2 exp
{
−

m
∑

i=1

(1−δi)(θi− xT
i β )2

2A2

}
I(A1 < A2),

(VI) For i = 1, . . . ,m, δi|θ ,β ,A1,A2, p,y are independent with

P(δi = 1|θ ,β , p,y) =

p√
A1

exp
{
− (θi−xT

i β )2

2A1

}
p√
A1

exp
{
− (θi−xT

i β )2

2A1

}
+ (1−p)√

A2
exp
{
− (θi−xT

i β )2

2A2

} .
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Our goal is to estimate θi, i.e., small area mean for the ith area, i = 1, . . . ,m. We

implement Gibbs sampling using the conditional distributions (I)−(VI) in order to

find posterior means and standard deviations of θi’s. Conditional distribution (IV)

and (V) may not have always admit a closed form expression.

Proof of Theorem 2.1

Note that under the mixture model, the likelihood function of the model parameters

β , A1, A2 and p based on the marginal distribution of y1, . . . ,ym is given by

L(β ,A1,A2, p) =C×
m

∏
i=1

[
p

(A1 +Di)
1
2

e
−
(yi− xT

i β )2

2(A1 +Di) +
(1− p)

(A2 +Di)
1
2

e
−
(yi− xT

i β )2

2(A2 +Di)
]
,

(6.2)

where C is a generic positive constant not depending on the model parameters.

Suppose for 0 < a < b < ∞ we have a ≤ Di ≤ b, i = 1, . . . ,m. Since (A1 + b) ≥
(A1 +Di)≥ (a/b)(A1 +b), (A2 +b)≥ (A2 +Di)≥ (a/b)(A2 +b), from (6.2)

L(β ,A1,A2, p)≤C×
m

∏
i=1

[
p

(A1 +b)
1
2

e
−
(yi− xT

i β )2

2(A1 +b) +
(1− p)

(A2 +b)
1
2

e
−
(yi− xT

i β )2

2(A2 +b)
]
.

(6.3)

For k = 0,1, · · · ,m, let Pk = {S
(k)
1 ,S(k)2 } be an arbitrary partition of {1,2, · · · ,m},

where S(k)1 has k elements and S(k)2 has m− k = l(say) elements. Let Pk denote all(m
k

)
collections of {S(k)1 ,S(k)2 }. Then, expanding the product of the right hand side

of (6.3), we get

L(β ,A1,A2, p)≤C
m

∑
k=0

∑
Pk∈Pk

pk(1− p)m−ke
−∑

i∈S(k)1

(yi− xT
i β )2

2(A1 +b)
−∑

i∈S(k)2

(yi− xT
i β )2

2(A2 +b)

(A1 +b)
k
2 (A2 +b)

m−k
2

.

(6.4)

To show propriety of the posterior density, we show integrability of each of the 2m

summands on the right hand side of (6.4) with respect to the prior given in (2.2).

We first consider the case k = 0. Here P0 has one element and S(0) is a null set. Let
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Q(y) = yT [I−X(XT X)−1XT ]y. In this case, the integral I(0) of the term is

I(0) = C
∫

∞

0

∫
Rr

∫ A2

0

∫ 1

0
(1− p)md p

dA1

Aα1
1

A−α2
2

(A2 +b)−
m
2

e
−∑

m
i=1

(yi− xT
i β )2

2(A2 +b) dβdA2

= C
∫

∞

0
A1−α1−α2

2 (A2 +b)−
m
2 e−

1
2

Q(y)
A2+b dA2 (since α1 < 1)

≤ C
∫

∞

0
A1−α1−α2

2 (A2 +b)−
m−r

2 dA2 < ∞, (6.5)

if and only if 2−α1−α2 > 0 and 1−α1−α2− m−r
2 <−1, which are equivalent

to the conditions outlined in Theorem 2.1.

For the case k = m, again there is one term in Pm and the resulting integral, pro-

ceeding as in I(0), is bounded above by

C
∫

∞

0
A−α1

1 (A1 +b)−
m−r

2

∫
∞

A1

A−α2
2 dA2dA1

= C
∫

∞

0
A1−α1−α2

1 (A1 +b)−
m−r

2 dA1 (since α2 > 1)< ∞, (6.6)

under the conditions of the theorem.

Now consider a case where 1≤ k≤m−1. Let S(k)1 be a set of indices {i1, . . . , ik} and

let S(k)2 = { j1, . . . , jl} = {1,2, · · · ,m} \ S(k)1 . Let us define, M1 = (xi1 , . . . ,xik)
T and

M2 = (x j1 , . . . ,x jl )
T . Suppose g = rank(M1). If g > 0, suppose B≡ {α1, . . . ,αg} ⊂

{i1, . . . , ik}, so that
{

xα1 , . . . ,xαg

}
is linearly independent. If g = 0, the set B is

empty. Suppose {γ1, . . . ,γr−g}⊂ { j1, . . . , jl} such that
{

xα1 , . . . ,xαg ,xγ1 , . . . ,xγr−g

}
is

linearly independent. Let us define the r×r matrix F =
(
xα1 , . . . ,xαg ,xγ1 , . . . ,xγr−g

)T ,

which is non-singular. Consider the non-singular linear transformation of β by

φ = Fβ . With these developments, the integral of the term identified by {S(k)1 ,S(k)2 }
in the right hand side of (6.4) with respect to the prior π(β ,A1,A2, p) is bounded

above by a positive generic constant C times

∫
∞

0

∫
∞

A1

∫
Rr

A−α1
1 A−α2

2 e
−∑

i∈S(k)1

(yi− xT
i β )2

2(A1 +b)
−∑

i∈S(k)2

(yi− xT
i β )2

2(A2 +b)

(A1 +b)
k
2 (A2 +b)

l
2

dβdA2dA1
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≤
∫

∞

0

∫
∞

A1

∫
Rr

A−α1
1 A−α2

2 e
−∑

g
u=1

(yαu− xT
αu

β )2

2(A1 +b)
−∑

r−g
t=1

(yγt − xT
γt

β )2

2(A2 +b)

(A1 +b)
k
2 (A2 +b)

l
2

dβdA2dA1

=
∫

∞

0

∫
∞

A1

∫
Rr

A−α1
1 A−α2

2 e
−∑

g
u=1

(yαu−φu)
2

2(A1 +b)
−∑

r−g
t=1

(yγt −φg+t)
2

2(A2 +b)

(A1 +b)
k
2 (A2 +b)

l
2

dφdA2dA1

=
∫

∞

0

∫
∞

A1

A−α1
1 A−α2

2

(A1 +b)
k−g

2 (A2 +b)
l−r+g

2

dA1dA2

≤
∫

∞

0

∫
∞

A1

A−α1
1 A−α2

2

(A1 +b)
k−g

2 (A1 +b)
l−r+g

2

dA2dA1

=
∫

∞

0

A1−α1−α2
1

(A1 +b)
k−g

2 (A1 +b)
l−r+g

2

dA1

=
∫

∞

0

A1−α1−α2
1

(A1 +b)
m−r

2
dA1 < ∞, (6.7)

by the conditions of the theorem. Since the integrability conditions do not depend k

or on the indices {i1, . . . , ik} and { j1, . . . , jl} and on the values k and l, the conditions

2−α1−α2 > 0 and m > r+2(2−α1−α2) will be sufficient to ensure the propriety

of the posterior. �
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VARIATIONAL APPROXIMATIONS FOR SELECTING
HIERARCHICAL MODELS OF CIRCULAR DATA IN A

SMALL AREA ESTIMATION APPLICATION

Daniel Hernandez-Stumpfhauser1, F. Jay Breidt2, Jean D. Opsomer3

ABSTRACT

We consider hierarchical regression models for circular data using the projected
normal distribution, applied in the development of weights for the Access Point
Angler Intercept Survey, a recreational angling survey conducted by the US Na-
tional Marine Fisheries Service. Weighted estimates of recreational fish catch are
used in stock assessments and fisheries regulation. The construction of the survey
weights requires the distribution of daily departure times of anglers from fishing
sites, within spatio-temporal domains subdivided by the mode of fishing. Because
many of these domains have small sample sizes, small area estimation methods are
developed. Bayesian inference for the circular distributions on the 24-hour clock
is conducted, based on a large set of observed daily departure times from another
National Marine Fisheries Service study, the Coastal Household Telephone Survey.
A novel variational/Laplace approximation to the posterior distribution allows fast
comparison of a large number of models in this context, by dramatically speed-
ing up computations relative to the fast Markov Chain Monte Carlo method while
giving virtually identical results.

Key words: deviance information criterion, Laplace approximation, model selec-
tion, projected normal distribution.

1. Introduction

In the United States, the Marine Recreational Fisheries Statistics Survey (MRFSS)
has been the traditional source of information on recreational fishing in saltwater.
The key question for stock assessment and fisheries regulation is the amount of
recreational fishing catch, determined from the simple relationship

(recreational catch) = (catch per angler-trip)× (number of angler-trips).

1University of North Carolina–Chapel Hill. E-mail: danielhs@live.unc.edu
2Colorado State University. E-mail: jbreidt@stat.colostate.edu
3Colorado State University. E-mail: jopsomer@stat.colostate.edu
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Due to a number of coverage and measurement issues, the two factors in the above
expression are measured using different surveys: (catch per angler-trip) is mea-
sured by an on-site survey called the Access Point Angler Intercept Survey (APAIS),
while the number of angler-trips is measured by an off-site survey called the Coastal
Household Telephone Survey (CHTS). Data from these two surveys are combined
to estimate the recreational catch in 17 US states along the coast of the Atlantic
Ocean and the Gulf of Mexico, during six two-month waves (January–February,
March–April,. . . , November–December), in four different fishing modes (from the
shoreline, from a private boat, from a small guided vessel called a charter boat, or
from a large guided vessel called a party boat). Because the state of Florida is di-
vided into its Atlantic coast and its Gulf of Mexico coast, we will refer to 18 “states”
instead of 17.

As part of the weighting procedure for the APAIS, estimates are needed for the
fraction of anglers who leave the fishing site during a prespecified time interval on a
selected day. In principle, these estimates could be readily obtained from extensive
historical data from the CHTS, consisting of reports on 980,000 trips between 1990
and 2008. These data include the angler’s departure time (on a 24-hour clock) from
the fishing site, the mode of fishing, the fishing date (from which we determine
the two-month wave), and the fishing site (from which we determine the state).
Figure 1 shows these data in histogram form for the state of Alabama. There are
24 histograms, corresponding to six waves by four fishing modes. The bars in the
histograms, when normalized by sample sizes, can be regarded as direct estimates
F̂direct

hi jk of the hourly fractions of daily departures by state, wave, and mode:

Fhi jk = fraction of a day’s anglers leaving a site during hour h

in state i, wave j, mode k.

The fraction for any prespecified block of hours is then modeled as ∑h Fhi jk, where
the sum is over all hours h in that block. Other time intervals are rounded to the
nearest whole hours, for simplicity.

The direct estimates F̂direct
hi jk from the off-site CHTS data are unbiased, but have

a small (or even zero) sample size in many of the (h, i, j,k) cells, of which there are

(24 hours)× (18 states)× (6 waves)× (4 modes) = (10368 cells).

We therefore consider the small area estimation approach, combining the direct esti-
mates with modeled estimates using the Fay and Herriot (1979) estimation method-
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Figure 1: Histograms of trip departure times from the Coastal Household Tele-
phone Survey for the state of Alabama (st 1) in six waves (top row = wave 1 =
January–February, . . . , bottom row = wave 6 = November–December) and four
modes (column 1 = shoreline, 2 = private boat, 3 = charter boat, 4 = party boat).
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ology. Briefly, we consider an area-level linear mixed model

F̂direct
hi jk = Fhi jk + ehi jk = Fmodel

hi jk +uhi jk + ehi jk

for h = 1, . . . ,23 hours, where the sampling errors are assumed to be

ei jk = (e1i jk,e2i jk, . . . ,e23,i jk)
T ∼ independent N (0,Ψi jk),

with Ψi jk known, and where the model errors are assumed to be

ui jk = (u1i jk,u2i jk, . . . ,u23,i jk)
T ∼ independent N (0,σ2

∆i jk),

with ∆i jk of known form. Sampling errors and model errors are assumed to be
independent. To implement the estimation strategy, we replace Ψi jk by design-based
variance estimates and we choose ∆i jk to be the variance of a scaled multinomial
random vector, specified as follows. Consider a vector of 24 independent normal
random variables with covariance matrix

σ
2diag

{
Gmodel

1i jk , . . . ,Gmodel
23i jk ,Gmodel

24i jk

}
= σ

2diag
{

Fmodel
1i jk

(
1−Fmodel

1i jk

)
, . . . ,Fmodel

24i jk

(
1−Fmodel

24i jk

)}
.

Then σ2∆i jk is the covariance matrix of the first 23 elements of the vector, condi-
tioned on the sum of the 24 elements being equal to one; namely,

σ
2
∆i jk = σ

2diag
{

Gmodel
1i jk , . . . ,Gmodel

23i jk

}

− σ2

∑
24
τ=1 Gmodel

τi jk


Gmodel

1i jk
...

Gmodel
23i jk

[Gmodel
1i jk , · · · ,Gmodel

23i jk

]
. (1)

We use a projected normal model for Fmodel
hi jk to account for the circular nature of

the time-of-day departure data, replacing Fmodel
hi jk by posterior means E

[
Fmodel

hi jk | D
]

and also Gmodel
hi jk by

(
E
[
Fmodel

hi jk | D
])(

1−E
[
Fmodel

hi jk | D
])

for implementation.
The mean vector in the projected normal includes state, wave, and mode effects
to account for the spatial and temporal distribution of fishing behavior. Since we
consider various interactions among the effects as well as placement within the hi-
erarchy (essentially, specifying whether a given effect is treated as fixed or random),
we are interested in conducting model selection.

The main contribution of the present paper is to show that in this small area
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estimation context, with a model somewhat more complex than a hierarchical linear
model (due to the embedding in a projected normal model), fast and accurate model
selection can be accomplished with a Laplace/variational approximation. Specif-
ically, we show that a simple and fast deterministic approximation can replace a
sophisticated Markov Chain Monte Carlo (MCMC) sampler, giving results that are
essentially identical at a far lower computational cost. In this paper, we emphasize
model selection as both the motivation for the deterministic approximation and the
evaluation of its accuracy. However, the Laplace/variational approximation can also
be used effectively in model estimation and inference even when no model selection
is needed.

In §2.1, we briefly review the projected normal distribution. The MCMC pro-
cedure that serves as the benchmark for comparison is presented in §2.2. The vari-
ational approximation is given in §3.1 with its Laplace refinement in §3.2. Model
selection criteria based on MCMC and on the Laplace/variational approximation are
compared in §4; discussion follows in §5.

2. Inference for the projected normal distribution

2.1. The projected normal distribution

Suppose X = (X1,X2)
T ∼ N (µ, I2), the bivariate normal distribution with mean

vector µ and identity covariance matrix I2. Writing X in polar coordinates, we have

X1 = ‖X‖cosD = RcosD, X2 = ‖X‖sinD = RsinD.

Discarding the random length R ∈ (0,∞), the random angle D ∈ [0,2π) has a pro-
jected normal distribution, PN (µ, I2). As illustrated in Figure 2, the parame-
ter vector µ plays the role of both “location” and “spread” for the projected nor-
mal: the further µ lies from the origin, the more concentrated the PN distri-
bution around the direction determined by µ . As µ → 0, the PN distribution
converges to the uniform distribution on the unit circle. In our application, the
departure time di jkt for trip t in state i, wave j, mode k is on the 24-hour clock.
Converting clock time to [0,2π), we model Di jkt = 2πdi jkt/24 as independent and
identically distributed projected normals within state×wave×mode cells. For ob-
servations following a projected normal distribution, the fraction Fhi jk for a given
hour h is the integral of the projected normal probability density function over the
interval (2π(h−1)/24,2πh/24].

Presnell, Morrison and Littell (1998) used the projected normal distribution as
the basis for the Spherically Projected Multivariate Linear Model (SPMLM) for
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Figure 2: Realizations (n = 20) from three projected normal distributions. The
large circle is centered at mean vector µ of bivariate normal N (µ, I2) and contains
95% of its probability. Arrows are the realized bivariate normal random vectors
(RcosD,RsinD). Projected normal random variables are the angles D, or the in-
tersections of the normal random vectors with the unit circle (small circle), scaled
to [0,2π). Left: Projected normal distribution with mode equal to π/4 and with
low variance. Middle: Projected normal distribution with mode equal to π/4 and
with high variance. Right: Projected normal distribution that is uniform on the unit
circle.

directional data, specifying µ as a linear model. Parameters of the model were esti-
mated with the maximum likelihood and the EM algorithm in Presnell et al. (1998).
In the current paper, we specify hierarchical linear models for µ i jk in terms of cat-
egorical covariates for the state, wave and mode. We conduct Bayesian inference
for the model, comparing approximate posterior inference based on Markov Chain
Monte Carlo to approximate inference based on deterministic approximations.

2.2. Markov Chain Monte Carlo for the projected normal distribution

The key step in conducting Bayesian inference under the SPMLM is to augment
the observed angles {Di jkt} with the latent lengths {Ri jkt}, so that the structure of
the complete data is simply that of a normal linear model. See Nuñez-Antonio and
Gutiérrez-Peña (2005), Nuñez-Antonio, Gutiérrez-Peña, and Escalera (2011), and
Hernandez-Stumpfhauser (2012) for details.

The likelihood for the complete-data model is the product of the joint densities
of
(
Ri jkt ,Di jkt

)
which can be obtained by a change of variables X i jkt = Ri jktAi jkt ,

where X i jkt is distributed as N
(
µ i jk, I2

)
and Ai jkt =

(
cos
(
Di jkt

)
,sin

(
Di jkt

))T :

p
(
Ri jkt ,Di jkt | µ i jk

)
=

1
2π

ri jkt exp
{
−1

2
(
Ri jktAi jkt −µ i jk

)T (Ri jktAi jkt −µ i jk
)}

.
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We specify conjugate normal priors for µ i jk. For example, for a model specified
as µ i jk = µ +mk + si +w j, we set vague normal priors for the overall mean µ and
mode effects mk, and mean-zero normal priors with inverse gamma variances for
the random state effects si and wave effects w j.

In this work, we draw the latent lengths using a slice sampler (Neal 2003). Given
the latent lengths and the conjugate priors, the full conditionals of the model param-
eters all have closed forms, and so the Gibbs sampler is fast and easy to conduct.
Nonetheless, the large number of models to be evaluated led us to consider fast,
deterministic approximations to the posterior distribution. This is the subject of the
next section.

3. Deterministic approximations to the posterior

3.1. Variational approximation

In this context, a carefully-developed MCMC works well and serves as a bench-
mark for comparison. But it is extremely slow, given the very large size of the
off-site CHTS data set. Because we wanted to compare a number of different model
specifications, we investigated replacing the MCMC approximation of the full pos-
terior distribution by a deterministic “variational approximation” that is easier to
compute.

The variational idea is to find the best approximation of the posterior within
a class of densities Q, which is chosen so that the densities in the class are more
analytically tractable than the posterior density itself. A natural choice for the “best”
approximating density in Q, and the one most commonly used, is the density that
minimizes the Kullback-Leibler (KL) distance between it and the posterior density.
Let D denote the observed data and ω denote the unknown parameters, so that
p(D,ω) is their joint density and p(ω | D) is the unknown posterior density. Let
q(ω) denote a density in Q. Finding q that minimizes the KL distance to p(ω | D)

is equivalent to maximizing the variational lower bound, denoted by

p(D;q) = exp
[∫

q(ω) log
{

p(D,ω)

q(ω)

}
dω

]
. (2)

Let
q∗ = max

q∈Q
p(D;q).

If Q = {all densities q}, then q∗(ω) = p(ω | D) , the true posterior of ω given D.
If Q is a sufficiently rich class of densities, then q∗ should be a good approximation
to the true posterior. In practice, the approximation method is necessarily of limited
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accuracy, so q∗ will not converge to the true posterior if the true posterior /∈Q.

If Q =
{

q : q(ω) = ∏
M
m=1 qωm(ωm)

}
, then q∗(ω) = ∏

M
m=1 q∗ωm(ωm), which is

called a “mean field variational approximation” (Bishop 2006; Ormerod and Wand
2010). This approximation can be computed efficiently, even for very large samples.
See Ormerod and Wand (2010) for an excellent review. The solution satisfies

q∗ω1(ω1) ∝ exp{E−ω1 log p(ω1 | ω2, . . . ,ωM,D)}
q∗ω2(ω2) ∝ exp{E−ω2 log p(ω2 | ω1,ω3, . . . ,ωM,D)}

...

q∗ωM(ωM) ∝ exp{E−ωM log p(ωM | ω1, . . . ,ωM−1,D)} ,

where E−ωm [·] denotes expectation with respect to all of the variational component
distributions except q∗ωm .

In our setting, q∗ωm(·) and E−ωm [·] have simple parametric forms; iteratively up-
dating the parameters leads to the solution. Convergence is assessed by monitoring
the change in the lower bound p(D;q) from (2).

For simplicity, we begin by considering {Dt} independent and identically dis-
tributed PN (µ, I2), with prior p(µ) =N2

(
µ0,σ

2
0 I2
)
. Denoting the observed data

as AT
t = (cosDt ,sinDt), the mean field variational approximation satisfies

q∗µ (µ) = N

(
µ0/σ2

0 +∑
n
t=1 E−rt (rt)At

n+
(
1/σ2

0

) ,
1

n+
(
1/σ2

0

) I2

)
(3)

q∗rt (rt) ∝ rt exp
(
−1

2
r2

t + rtAT
t E−µ (µ)

)
, (4)

where the expectations in these expressions are computed iteratively:

E−µ(µ) ←
µ0/σ2

0 +∑
n
t=1 E−rt (rt)At

n+
(
1/σ2

0

)
bt ← AT

t E−µ(µ)

E−rt (rt) ← bt +

√
2π exp(b2

t /2) Φ(bt)

1+
√

2π bt exp(b2
t /2) Φ(bt)

.

The mean field variational approximation yields a highly tractable approximate
posterior, and the iterative solution is simple to compute and fast to converge. In
fact, it is proved in Hernandez-Stumpfhauser (2012) that the parameter iterations
for µ converge to the posterior mode of the parameters of the projected normal
distribution, denoted here by µ†. Extension of the mean field variational approx-
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imation to the case of a linear model for µ is straightforward, and involves up-
dates of means and variances of each one of the fixed and random effects as well
as updates of the means of inverse variances of the random effects. See Hernandez-
Stumpfhauser (2012) for details.

3.2. Refinement via Laplace approximation

While the mean field variational approximation of the previous section is simple
and fast, it is not very accurate. Indeed, the approximate posterior variance for µ

in (3) depends on the sample size but not on the data, and so cannot be accurate
except in simple cases. Our approach to improving the accuracy of the variational
approximation is to replace q∗µ(µ) by a Laplace approximation N (µ†,V †), where
µ† is the posterior mode and the covariance matrix V † is the inverse of minus the
Hessian of the log posterior distribution evaluated at the mode,

V † =

−
 ∂ 2

∂ µ2
1

log p(µ | D) ∂ 2

∂ µ1µ2
log p(µ | D)

∂ 2

∂ µ1µ2
log p(µ | D) ∂ 2

∂ µ2
2

log p(µ | D)

∣∣∣∣∣∣
µ=µ †


−1

.

The log posterior distribution is

log p(µ | D) = logN
(
µ0,σ

2
0 I2
)
+

n

∑
t=1

logPN (Dt ; µ, I2)+C,

where C is a term that does not depend on µ , and the calculations to compute the
Hessian are given in Hernandez-Stumpfhauser (2012). This Laplace refinement to
the variational approximation greatly improves the quality of the original approx-
imation, as is shown in Hernandez-Stumpfhauser (2012) by comparing the varia-
tional approximation and the variational/Laplace approximation to the output of the
Gibbs sampler. Similar results hold in the regression case: the Laplace refinement
substantially improves the quality of the variational approximation.

4. Comparing model selection via Gibbs, variational, and
variational/Laplace

For a general Bayesian estimation problem, the deviance is defined as ∆(D,ω) =

−2ln p(D | ω) where D are the data, ω are the unknown parameters and p(D | ω)

is the likelihood function (Gelman et al. 2004, p. 179–184). The expected deviance
E [∆(D,ω) | D] is a measure of how well the model fits and it can be estimated
by the posterior mean deviance ∆(D) = B−1

∑
B
b=1 ∆(D,ω(b)), where {ω(b)}B

b=1 are
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random draws from the posterior distribution. The difference between the posterior
mean deviance and the deviance at the posterior mean, estimated as

p∆ = ∆(D)−∆(D, ω̄)

where ω̄ = B−1
∑

B
b=1 ω(b), is often interpreted as a measure of the effective number

of parameters of a Bayesian model. More generally, p∆ can be thought of as the
number of “unconstrained” parameters in the model, where a parameter counts as 1
if it is estimated without constraints or prior information, 0 if it is fully constrained
or if all the information about the parameter comes from the prior distribution, or
an intermediate value if both the data and prior distributions are contributing.

We used the Deviance Information Criterion,

DIC = 2∆(D)−∆(D, ω̄) = ∆(D)+ p∆,

to compare different model specifications for the departure time data. The DIC can
be interpreted as a measure of goodness-of-fit (the estimated expected deviance)
plus a penalty for model complexity in the form of the total number of effective
parameters. Lower values of DIC correspond to more preferable tradeoffs between
fit and model complexity.

We evaluated a large number of different model specifications for the mean of
the projected normal distribution, including fixed and random effects for the states,
waves and modes as well as for interactions between these factors. As an example
of the type of models compared, the following is the full hierarchical specification
for a model with mode as fixed effect and state and wave as random effects:

Di jkt ∼ PN (µ i jk, I2)

µ i jk = µ +mk + si +w j

µ ∼ N (0,106I2)

mk ∼ N (0,106I2)

si ∼ N (0,σ2
s I2)

w j ∼ N (0,σ2
wI2)

σ
2
s ∼ I G (0.001,0.001)

σ
2
w ∼ I G (0.001,0.001).

In this specification, µ,mk have vague priors while those of si,w j are determined by
their variance parameters, which follow pre-specified inverse gamma hyper-priors.
This hierarchical set-up is similar to the usual Bayesian normal regression model.
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We computed DIC and p∆ values using Gibbs sampling, variational and varia-
tional/Laplace. Table 1 shows the Gibbs DIC values for different models applied to
the departure time data. In Table 1, the models containing all three factors (mode,
state, wave) consistently achieve lower DIC values than the models that excluded
any of those factors. While not shown here, models with mode as random effect
performed worse than models with mode as fixed effect. In contrast, very similar
DIC values were obtained with the state and wave treated as either fixed or random.
When we investigated models with interactions between the three factors, those
with state-wave interactions scored better than any other arrangement of two-way
interactions. Among the various models considered, DIC leads to selection of

µ i jk = µ +mk + swi j,

with mk a fixed mode effect and swi j a random interaction effect between the state
and wave, with 99 total levels. Note that there are 6×18 = 108 possible state-wave
combinations, so that there are nine state-wave combinations without observations
where a mode-only model was applied. This was the final model used for purposes
of small area estimation.

The effective number of parameters p∆ for each model, computed via Gibbs
sampling, are shown in Table 2. In interpreting these values, it should be noted that
one level of a factor is represented by two parameters. Hence, in a model with only
a mode effect there are eight parameters: two for the overall mean and six more for
the three remaining free mode levels. The model with only a mode effect has p∆

values (in the first row of Table 1) very close to eight. The final selected model has
p∆ = 191.5.

We now turn to a comparison of the computation of DIC and p∆ using Gibbs,
variational and variational/Laplace. All three methods yield essentially identical
posterior means ω̄ , so ∆(D, ω̄) is also essentially identical across methods. The dif-
ferences in DIC across methods, displayed in Table 1, and differences in p∆ across
methods, displayed in Table 2, therefore come from differences in the posterior
mean deviance ∆(D) across methods. As can be seen from the two tables, the vari-
ational approximation without Laplace refinement significantly underestimates the
posterior mean deviance, resulting in large negative differences in both DIC and p∆

values. By contrast, Gibbs and variational/Laplace yield nearly identical estimates
of the posterior mean deviance, hence virtually identical DIC and p∆ values. For
the tabled results, iterating the variational/Laplace approximation to convergence is
about 15 times faster than 5000 iterates of Gibbs sampling. For purposes of model
selection, therefore, the variational/Laplace approximation performs extremely well
in this example.
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Table 1: DIC values from Gibbs sampler for ten different projected normal model
specifications, along with comparisons to DIC computed via other methods: Varia-
tional DIC minus Gibbs DIC and Variational/Laplace DIC minus Gibbs DIC.

Fixed Random Gibbs Variational Variational/Laplace
Effects Effects DIC − Gibbs DIC − Gibbs DIC

mode 2642714.6 −2.7 −0.5
mode; wave 2631925.2 −4.3 0.1

mode wave 2631925.9 −5.1 0.0
mode; state 2626382.7 −18.1 0.7

mode state 2626383.6 −20.0 0.1
mode; wave; state 2616177.1 −23.4 0.2

mode; state wave 2616177.2 −23.5 −1.7
mode; wave state 2616175.4 −21.5 1.3

mode state; wave 2616176.3 −22.9 −0.4
mode state×wave 2613338.4 −105.9 −0.4

Table 2: Effective number of parameters p∆ values from Gibbs sampler for ten
different projected normal model specifications, along with comparisons to effective
number of parameters computed via other methods: Variational p∆ minus Gibbs p∆

and Variational/Laplace p∆ minus Gibbs p∆.

Fixed Random Gibbs Variational Variational/Laplace
Effects Effects p∆ − Gibbs p∆ − Gibbs p∆

mode 8.3 −1.3 −0.2
mode; wave 17.7 −2.1 0.1

mode wave 18.0 −2.5 0.0
mode; state 41.4 −9.0 0.4

mode state 41.8 −9.9 0.1
mode; wave; state 52.5 −11.7 0.1

mode; state wave 52.5 −11.7 −0.8
mode; wave state 51.5 −10.7 0.7

mode state;wave 52.0 −11.4 −0.2
mode state×wave 191.5 −53.4 −0.9
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5. Discussion

In this paper, we have briefly described an important small area estimation problem
in which a hierarchical linear model is embedded in a nonlinear, projected normal
model. A massive data set is considered, for which MCMC is feasible but slow. A
large number of models are compared. Though a mean field variational approxi-
mation is not very accurate in this problem, it can be refined substantially by us-
ing a Laplace approximation, and the resulting variational/Laplace approximation
is both accurate and extremely fast to compute. In particular, model selection re-
sults are virtually indistinguishable between the MCMC and the variational/Laplace
approaches. While these results are limited to the particular problem under consid-
eration, they do suggest that there is considerable promise for variational/Laplace
approximations in model selection and inference in small area estimation problems.
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DEVELOPMENT OF SMALL AREA ESTIMATION IN 

OFFICIAL STATISTICS1   

Jan Kordos2  

ABSTRACT 

The author begins with a general assessment of the mission of the National 
Statistics Institutes (NSIs), main producers of official statistics, which are obliged 
to deliver high quality statistical information on the state and evolution of the 
population, the economy, the society and the environment. These statistical 
results must be based on scientific principles and methods. They must be made 
available to the public, politics, economy and research for decision-making and 
information purposes. 
Next, before discussing general issues of small area estimation (SAE) in official 
statistics, the author reminds: the methods of sampling surveys, data collection, 
estimation procedures, and data quality assessment used for official statistics. 
Statistical information is published in different breakdowns with stable or even 
decreasing budget while being legally bound to control the response burden.   
Special attention is paid, from a practitioner point of view, to synthetic 
development of small area estimation in official statistics, beginning with 
international seminars and conferences devoted to SAE procedures and methods 
(starting with the Canadian symposium, 1985, and the Warsaw conference, 1992, 
to the Poznan conference, Poland, 2014), and  some international projects 
(EURAREA, SAMPLE, BIAS, AMELI, ESSnet). Next, some aspects of 
development of SAE in official statistics are discussed. At the end some 
conclusions regarding quality of SAE procedures are considered.  

Key words: small area estimation, official statistics, sampling survey, direct 
estimation, indirect estimation, empirical Bayes estimator; hierarchical Bayes 
estimator; data quality. 

1. Introduction 

National Statistics Institutes (NSIs) are the most important statistical 

information providers for official statistics. Their mission is to produce high 

                                                           
1 This is an updated and extended version of the first part of the paper entitled “Small Area 

Estimation in Official Statistics and Statistical Thinking” presented at the International 

Conference on Small Area Estimation 2014, held in Poznan, Poland, 3-5 September 2014. 
2 Central Statistical Office of Poland and Warsaw Management Academy. 
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quality statistical information on the state and evolution of the population, the 

economy, the society and the environment. These statistical results must be based 

on scientific principles and methods. They must be made available to the public, 

politics, economy and research for decision-making and information purposes. 

One important challenge that NSIs have to face is the growing users’ demand 

with stable or even decreasing budget while being legally bound to control the 

response burden. The use of more and more efficient statistical methods is a way 

to take up this challenge.  To collect, estimate, process and publish statistical 

information NSIs use different methods and procedures, but special emphasis is 

paid to sampling surveys, taking into account basic needs, cost and respondent 

burden. For this reason, issues connected with sampling surveys in official 

statistics from a practitioner point of  view are considered first here, using 

different  approaches, methods, and variety of data, mainly sampling data, 

censuses and registers (Brakel & Bethlehem, 2008; Little, 2004. 2012). 

2. Sampling surveys in official statistics and issues of SAE methods 

First, the author would like to remind that the purpose of sampling surveys is 

to obtain statistical information about a finite population by: a) selecting a 

probability sample from this population, b) obtaining or measuring the required 

information about the units in this sample, and c) estimating finite population 

parameters such as means, totals, ratios, etc., and assessing their variances (Brakel 

& Bethlehem, 2008). The statistical inference in this setting can be: (i) design-

based, (ii) model-assisted or (iii) model-based. In the design-based and model-

assisted approach, the statistical inference is based on the stochastic structure 

induced by the sampling design. Parameter and variance estimators are derived 

under the concept of repeatedly drawing samples from a finite population 

according to the same sampling design, while statistical modelling plays a minor 

role. This is the traditional approach of survey sampling theory, followed by 

authors like Hansen et al. (1953), Kish (1965), Cochran (1977), Yates (1981) and 

Särndal et al. (1992). 

In the model-based context, the probability structure of the sampling design 

plays a less pronounced role, since the inference is based on the probability 

structure of an assumed statistical model. This is the position taken by authors 

like Gosh and Meeden (1997), Gosh &Rao (1994), Rao (1999), Valliant et al. 

(2000), Rao (2003), Pfeffermann (2002, 2013) and Jang &  Lahiri (2006). An 

overview of the different modes of inference in survey sampling is given by Little 

(2004).  

Design-based and model-assisted estimators refer to a class of estimators that 

expand or weight the observations in the sample with the so-called survey 

weights. Survey weights are derived from the sampling design and available 

auxiliary information about the target population. Functions of the expanded 

observations in the sample are used as (approximately) design-unbiased 
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estimators for the unknown population parameters of interest. The associate 

inferences are based on the probability distribution induced by the sampling 

design with the population values held fixed. 

A well-known design-based estimator is the π-estimator or Horvitz-Thompson 

estimator, developed by Narain (1951), and Horvitz and Thompson (1952) for 

unequal probability sampling from finite populations without replacement. The 

observations are weighted with the inverse of the inclusion probability, also called 

design-weights. This estimator is design-unbiased, since the expectation of the 

estimator with respect to the probability distribution induced by the sampling 

design is equal to the true but unknown population value. 

The precision of the Horvitz-Thompson estimator can be improved by making 

advantage of available auxiliary information about the target population (Wywiał, 

2000). In the model-assisted approach developed by Särndal et al. (1992) this 

estimator is derived from a linear regression model that specifies the relationship 

between the values of a certain target parameter and a set of auxiliary variables 

for which the totals in the finite target population are known. Based on the 

assumed relationship between the target variable and the auxiliary variables, a 

generalized regression estimator can be derived of which most well-known 

estimators are special cases. After this estimator is derived, it is judged by its 

design-based properties, such as design expectation and design variance. 

Most NSIs surveys are designed to provide statistically reliable estimates at 

national or high-level geographies. So when statistics are required for more 

detailed geographical areas or small subgroups of the population, the sample sizes 

just are not big enough to make reliable estimates. Increasing the size of samples 

would be prohibitively expensive – instead, estimation methods have been 

developed that combine data from administrative, census and survey sources to 

produce estimates for small areas or domains. There are many statistical 

techniques covered by small area estimation, a frequently used approach is a 

model-based one, where local area outcomes are estimated from the regression 

between survey data and auxiliary data from census and administrative data 

sources. 

The great importance of SAE stems from the fact that many new programs, 

such as fund allocation for needed areas, new educational or health programs and 

environmental planning rely heavily on these estimates. SAE techniques are also 

used in many countries to test and adjust the counts obtained from censuses that 

use administrative records and for post-enumeration surveys after the population 

censuses for quality assessment. SAE is researched and applied so broadly 

because of its usefulness to researchers who wish to learn about the research 

carried out in SAE and to practitioners who might be interested in applying the 

new methods.  

The problem of SAE is twofold. First, the fundamental question is how to 

produce reliable estimates of characteristics of interest (means, counts, quantiles, 

etc.) for small areas or domains, based on very small samples taken from these 

areas. The second related question is how to assess the estimation error. Budget 
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and other constraints usually prevent the allocation of sufficiently large samples 

to each of the small areas. Also, it is often the case that domains of interest are 

only specified after the survey has already been designed and carried out. Having 

only a small sample (and possibly an empty sample) in a given area, the only 

possible solution to the estimation problem is to borrow information from other 

related data sets. 

As it has been mentioned, and from theoretical point of view, SAE methods 

can be divided broadly into “design-based” and “model-based” methods. The 

latter methods use either the frequentist approach or the full Bayesian 

methodology, and in some cases combine the two, known in the SAE literature as 

“empirical Bayes”. Design-based methods often use a model for the construction 

of the estimators (known as “model assisted”), but the bias, variance and other 

properties of the estimators are evaluated under the randomization (design-based) 

distribution. The randomization distribution of an estimator is the distribution 

over all possible samples that could be selected from the target population of 

interest under the sampling design used to select the sample, with the population 

measurements considered as fixed values (parameters). Model-based methods, on 

the other hand, usually conditioned on the selected sample, and the inference is 

with respect to the underlying model. A common feature to design- and model-

based SAE is the use of auxiliary covariate information, as obtained from large 

surveys and/or administrative records such as censuses and registers. Some 

estimators only require knowledge of the covariates for the sampled units and the 

true area means of these covariates. Other estimators require knowledge of the 

covariates for every unit in the population. The use of auxiliary information for 

SAE is vital because with the small sample sizes often encountered in practice, 

even the most elaborated model can be of little help if it does not involve a set of 

covariates with good predictive power for the small area quantities of interest.  

It is now generally accepted that the indirect estimates should be based on 

explicit models that provide links to related areas through the use of 

supplementary data such as census counts or administrative records. See, for 

example, Ghosh and Rao (1994), Rao (1999), Rao (2003), Pfeffermann (2002, 

2013), and Jiang and Lahiri (2006)  for more discussion on model-based small 

area methods.  

Thus, the model-based estimates are obtained to improve the direct design-

based estimates in terms of precision and reliability, i.e., smaller coefficients of 

variation (CVs). Supplementary data are vital for improving quality of small area 

statistics. These data are used to construct predictor variables for use in a 

statistical model that can be used to predict  the estimate of interest for small 

areas. The effectiveness of small area estimation depends initially on the 

availability of good predictor variables that are uniformly measured over the total 

area. It next depends on  the choice of a good prediction model. Effective use of  

small area estimation methods  further depends on a careful, thorough evaluation 

of the quality of the model. Finally, when small area estimates are produced, they 

should be accompanied by valid measures of their precision. Now, there is a wide 
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range of different, often complex models that can be used, depending on the 

nature of the measurement of the small area estimates and on the auxiliary data 

available. One key distinction in model construction is between situation where 

the auxiliary data are available for the individual units in the population and those 

where they are available at aggregate level for each small area. In the former case,  

the data can be used  in unit level models. Another feature involved in the choice 

of a model is whether the model borrows strength across sectional or over time, or 

both. There are also now a number of different approaches, such as empirical best 

linear prediction (EBLUP), empirical Bayes (EB) and hierarchical Bayes (HB) 

that can be used to estimate the models and the variability of the model dependent 

small area estimates (Choudry et al., 1989, 2012; Data. 2009; Datta et al.,1999, 

2012; Gosh & Meeden, 1997, 1999; Kubacki, 2004; Lehtonen et al., 2003, 2005, 

2009; Molina et al., 2009; Moura et al., 2002;  Pfeffermann,1999, 2013; 

Pfeffermann & Tiller, 2006; Pratesi &Salvati, 2008; Rao, 2003, 2011; You & 

Dick, 2004). Moreover, complex procedures that would have been extremely 

difficult to apply a few years ago can now be implemented fairly 

straightforwardly, taking advantage  of the continuing increases in computing 

power and the latest developments in software.   

Thus, there are two broad classifications for small area models: area level 

models and unit level models: 

 Area level models that relate small area means and totals to area-specific 

auxiliary variables, 

 Unit level models that relate the unit values of the dependent variable to unit 

specific auxiliary variables. 

Among the area level models, the Fay-Herriot model (Fay and Herriot, 1979) 

is a basic and widely used area level model in practice to obtain reliable model-

based estimates for small areas. The Fay-Herriot model basically has two 

components, namely, a sampling model for the direct estimates and a linking 

model for the parameters of interest. The sampling model involves the direct 

survey estimate and the corresponding sampling variance. The Fay-   Herriot 

model assumes that the sampling variance is known in the model. Typically, a 

smoothed estimator of the sampling variance is obtained and then treated as 

known in the model. Wang and Fuller (2003), You and Chapman (2006), 

Gonzalez-Manteiga, et al. (2010), considered the situation where the sampling 

variances are unknown and modelled separately by direct estimators.  

The linking model relates the parameter of interest to a regression model with 

area-specific random effects. In the Fay-Herriot model, the area random effects 

are usually assumed to be independent and identically distributed  normal random 

variables to capture geographically unstructured variations among areas. 

However, in some small area applications, particularly in public health estimation 

problems, geographical variation of a disease is a subject of interest, and 

estimation of overall spatial pattern of risk and borrowing strength across regions 

to reduce variances of final estimates are both important. Thus, it may be more 
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reasonable to construct spatial models on the area-specific random effects to 

capture the spatial dependence among them. The spatial models are generally 

used in health related small area estimation, and various spatial models have been 

proposed for small area estimation [(e.g. Ghosh et al.,  1999; Moura et al., 2002; 

Pratesi and Salvati (2008),  Singh et al., (1994) and Molina et al., (2009)]. Best et 

al., (2005) provided a comprehensive review on spatial models for disease 

mapping. Rao (2003) also discussed several spatial small area models. 

The unit model originates with Battese, Harter and Fuller (1988).  They used 

the nested error regression model to estimate county crop areas using sample 

survey data in conjunction with satellite information. Prasad and Rao (1990, 

1999) were first to include the survey weights in the unit level model: they 

labelled their estimator as a pseudo-EBLUP estimator of the small area mean. 

Prasad and Rao (1999) also provided based expressions for the MSE of their 

estimator when it included the estimated variance components. You and Rao 

(2002) proposed an estimator of β that ensures self-benchmarking of the small 

area estimates to the corresponding direct estimator. 

Thus, an indirect estimator uses values of the variable of interest from a 

domain and/or time period other than the domain and time period of interest. 

Three types of indirect estimators can be identified: 

 A domain indirect estimator uses values of the variable of interest from 

another domain but not from another time period.  

 A time indirect estimator uses values of the variable of interest from another 

time period but not from another domain.  

 An estimator that is both domain and time indirect uses values of the variable 

of interest from another domain and another time period.  

Individual level models work in two stages using regression modelling. 

Firstly, the survey data are used to predict the probability of the characteristic of 

interest based on the attributes of the individuals in the survey (such as gender, 

age and marital status). The aggregate levels of a cross tabulation of these 

individual characteristics for each local area are obtained, usually from the 

census, and the coefficients from the regression model are applied to those small 

area covariate values so as to calculate the expected value of the target outcome 

variable conditional on the area’s characteristics. The steps are relatively 

straightforward:  

 Ensure that the predictor variables are available in both survey data and for 

small areas  

 Fit a regression model to survey data to predict the probability of chosen 

outcome  

 Use Wald tests to consider dropping non-significant variables.     

 Extract parameter estimates and apply to small area data.  
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In short,  SAE is a collection of different methods: 

 Synthetic methods (often implicit assumptions on the nature of relationship; a 

simple case: rates at NUTS2 level = rates at NUTS4 level). 

 Composite methods (linear combination of synthetic methods and direct 

estimators to balance bias and variance). 

 Estimator based on linear mixed models (EBLUP, EB, HB). 

 Non-linear models (e.g. logistic models for binary responses) with spatial 

and/or temporal correlation structures among random effects. 

 Semi-parametric models.  

Potentially more serious, with respect to accuracy and quality, are non-

sampling errors such as coverage errors, measurement errors and response bias. 

Most censuses miss some people, or count some people twice, and it has been 

repeatedly shown that those miscounted are generally not typical of the 

population as a whole. Census or sample survey estimates may therefore be 

biased against certain subgroups of the population. If these subgroups tend to be 

geographically clustered, this can have a serious impact on estimates for some 

small areas. Response bias arises if many respondents systematically 

misunderstand a census  or a survey question or are unable or unwilling to give 

correct answer. Both small area and large area estimates would be affected by 

such errors (Bethlehem, 1988; Bethlehem et al. 1985; Brackstone, 1999, Eurostat, 

2007; Holt et al, 1991; Kalton, 2002; Kalton & Kasprzy, 1986; Kordos, 2005; 

Longford, 2005; Rao, 2011; Trewin, 2002). 

3. Use of administrative data in official statistics 

NSIs around the world are coming under increasing pressure to improve the 

efficiency of the statistical production process, and particularly to make  savings 

in costs and staff resources. At the same time, there are growing political  

demands to reduce the burden placed on the respondents to statistical surveys. 

Given these pressures, statisticians are increasingly being forced to consider 

alternatives to the traditional survey approach as a way of gathering data. Perhaps 

the most obvious answer is to see if usable data already exist elsewhere. Many 

nonstatistical organisations collect data in various forms, and although these data 

are rarely direct substitutes for those collected via statistical surveys, they often 

offer possibilities, sometimes through the combination of multiple sources, to 

replace, fully or partially, direct statistical data collection. The degree of the use 

of administrative sources in the statistical production process  varies considerably 

from country to country, from those that have developed fully functioning 

register-based statistical systems, to those that are just starting to consider this 

approach. A significant contribution in this field is publication issued in 2011 by 
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the United Nations Economic Commission for Europe3, entitled “Using 

Administrative and Secondary Sources for Official Statistic, A Handbook of 

Principles and Practices”. These trends make model-based procedures more and 

more attractive and relevant for NSIs to apply in the production of official 

statistics (Chambers et al., 2006).  

Administrative datasets are typically very large, covering samples of 

individuals and time periods not normally financially or logistically achievable 

through survey or even census methodologies. Alongside cost savings, the scope 

of administrative data is often cited as its main advantage for research purposes, 

though coverage is recognized to be imperfect. The lack of control the researcher 

has during the data collection stage and how this affects its quality, and therefore 

what can be done with the data, are the main problems for administrative data. 

More general concern has also been voiced about the lack of well-established 

theory and methodologies to guide the use of administrative data in social science 

research.  

Potential auxiliary data should be evaluated for their relationship to the 

variable(s) of interest, both theoretically and statistically as well as the accuracy 

and reliability with which they have been collected. The theoretical relationship 

should emanate from tested social or economic theories. A careful examination 

should be made to understand any major differences between the auxiliary data 

and the variables of interest. 

Consideration should be given to the purpose for which the data were initially 

collected, how it was processed and edited, what conceptual definitions were used 

and what the scope of the auxiliary data holdings is. This will allow appropriate 

auxiliary information to be chosen to improve the model, and in explaining to 

users what factors are driving the small area estimates and help pinpoint potential 

sources of error.  

Although auxiliary information was originally used in the design and 

estimation procedure of a survey to decrease the sampling variance of estimators, 

nowadays it is an important tool to decrease the bias due to selective non-

response. Estimators using auxiliary information are generally more robust 

against selective non-response than estimators that do not use auxiliary 

information (Bethlehem, 1988; Särndal et al., 1987, 2005; Thomsen et al., 1998). 

Common concern around the use of detailed administrative data at the small 

area level includes risks around confidentiality, anonymity and disclosure and this 

may lead to data controllers refusing to release the data or making it available 

within very controlled environments. An important consideration therefore for the 

release or publication of administrative data at individual or aggregate small area 

level is that the identity of individuals is protected. The assessment of disclosure 

risk is a complex process. Generally, the more detail the data has and the higher 

                                                           
3 http://www.unece.org/fileadmin/DAM/stats/publications/Using_Administrative_Sources_Final_ 

for_web.pdf. 

http://www.unece.org/fileadmin/DAM/stats/publications/Using_Administrative_Sources_Final_for_web.pdf
http://www.unece.org/fileadmin/DAM/stats/publications/Using_Administrative_Sources_Final_for_web.pdf
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the proportion of the population of interest that is captured in the data, the higher 

the risk.  

There are various ways in which extracts of administrative data can be linked 

with other data sources to create more comprehensive and powerful datasets for 

analysis (both in terms of cases and variables).  

Examples of available administrative data: i) population, ii) building and 

dwellings, iii) taxes, iv) business registers. Uses of administrative data are 

especially useful for:  

1) improving survey results (sampling frame for persons and business surveys; 

auxiliary variables for calibration); 

2) reducing the respondent burden: directly (some questions are skipped); 

indirectly (gain efficiency the estimators). 

Administrative data holds great research potential for SAE (and other) 

research in all national contexts although the research availability and use of such 

data varies significantly between countries. There is also a problem how to use 

available BIG Data or other approaches for SAE in official statistics. 

4. The international conferences and research projects towards 

application of SAE methods in official statistics 

There have been different kind of conferences, seminars, and research projects 

devoted to exchange of ideas, experiences and achievements related to application 

of SAE in official statistics. First, some international conferences and next 

selected international research projects devoted to  applications of SAE methods 

are briefly presented. 

4.1. The International Conferences to apply SAE methods in official statistics 

The results of the first attempts of applications of SAE methods in official 

statistics were presented at the symposium held in Ottawa in 1985 and published 

in Platek et al. (1987).  

This publication had significant impact on academic statisticians and research 

statisticians in NSIs, and specially on countries in transition in Central and 

Eastern Europe, which organized  international conferences held in  Poland in 

1992 (Warsaw Conference in 1992: Kalton et al., 1993), and Latvia in 1999 (Riga 

conference: Riga, 1999). 

Starting from 2005, a new series of SAE Conferences  have taken place in: 

Finland, (Jyvaskyla, 2005); Italy, (Pisa, 2007); Spain, (Elche, 2009); Germany, 

(Trier, 2011); Thailand, (Bangkok, 2013); Poland, (Poznan, 2014), Chile, 

(Santiago de Chile, 2015). 

SAE conferences are aimed at providing a platform  for discussion and 

exchange of ideas about current developments in small area estimation research in 

different fields. The conferences address - in a good balance with theoretical and 
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methodological development in small area estimation and related fields, and in 

practical application - of SAE methods, including their potential uses in various 

research areas in official statistics. The need to regulate and promote the 

continuity of SAE conferences required the creation a working group with an 

acronym: EWORSAE – the European Working Group on Small Area Estimation4 

– aimed to build and maintain a network of researchers and statisticians to foster 

collaborative work and to increase cooperation between Statistical Offices and the 

research community within the field of SAE and related topics. Although the 

working group is basically European, it is open to all people worldwide working 

in small area estimation5. 

4.2. The International Projects for SAE implementations in official statistics 

Before presenting some international projects for SAE methods applications 

in official statistics, it seems reasonable to begin with a program started in the 

USA over 20 years ago. 

SAIPE – an acronym for Small Area Income and Poverty Estimates6. The U.S. 

Census Bureau's program started at the beginning of 1990s and has provided 

annual estimates of income and poverty statistics for all states, counties, and 

school districts. The main objective of this program is to provide estimates of 

income and poverty for the administration of federal programs and the allocation 

of federal funds to local jurisdictions. In addition to these federal programs, state 

and local programs use the income and poverty estimates for distributing funds 

and managing programs. SAIPE revises and improves methodology as time and 

resources allow. The details of the methodology differ slightly from year to year. 

The most significant change was between 2004 and 2005, when SAIPE began 

using data from the American Community Survey, rather than from the Annual 

Social and Economic Supplement to the Current Population Survey. 

Some impact on applications of SAE procedures in official statistics has had 

the following international projects sponsored by the European Union:  

EURAREA; SAMPLE; BIAS; AMELI; ESSnet 

4.2.1. The EURAREA project investigated methods for small area 

estimation and their application in official statistics. It was funded by Eurostat 

under the Fifth Framework (FP5) Programme of the European Union and was 

carried out by a consortium of NSIs, universities and research consultancies from 

across the European Union (United Kingdom, Spain, Italy, Sweden, Norway, 

Finland and Poland). The project was co-ordinated by the UK Office for National 

Statistics. It ran from January 2001 until June 2004 and was signed off by 

                                                           
4 On initiative of Spanish Statisticians. 
5 http://sae.wzr.pl/. 
6 http://beta.census.gov/did/www/saipe/about/index.html.  

http://sae.wzr.pl/
http://beta.census.gov/did/www/saipe/about/index.html
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Eurostat in February 2005. The aim of this project was to evaluate the 

effectiveness of standard estimation techniques for small areas (synthetic 

estimators, GREGs and composite estimators). The studies carried out until 2004 

were based on sampling designs with equal selection probabilities. In order to 

undertake this project it was necessary to study the existing theory as well as to 

develop new theories that make it easier to obtain estimation techniques and their 

mean squared error when other sampling plans are used that are more similar to 

those applied in official statistics in the real world. Finally, all the theory 

developed has been implemented in a SAS IT application whose use has been 

widely documented so that any user is able to apply the programme to his/her 

own data. The links below provide further information about the project, its aims, 

objectives and conclusions7. 

The research outputs from the project are available in the download section: 

these include the final project reference volume and macro language programs 

written in SAS. The project reference volume contains reviews of existing theory 

in small area estimation, an assessment of the “standard” estimators and the 

results of the innovative work undertaken within the project. The program codes 

for the procedures investigated are provided so that the results can be 

implemented by other NSIs and statisticians. The program code has been written 

in SAS macro language or SAS macros or routines that can be called in 

SAS. Some results are also presented in EURAREA (2004),  Heady et al. (2001, 

2004) and Chambers et al. (2006). 

4.2.2. SAMPLE: Small Area Methods for Poverty and Living Condition 

Estimates 

The Project was supported by the European Commission (FP7-SSH-2007-1).  

The aim of SAMPLE project was to identify and develop new indicators and 

models for inequality and poverty with attention to social exclusion and 

deprivation, as well as to develop, implement models, measures and procedures 

for small area estimation of the traditional and new indicators and models8. This 

goal was achieved with the help of the local administrative databases. Local 

government  agencies often had huge amount of administrative data to monitor 

some of the actions which witness situations of social exclusion and deprivation 

(social security claims for unemployment and eligibility for benefits from any of 

the programs Social Security administers) of households and citizens. SAMPLE 

utilised widely used indicators on monetary and non-monetary poverty. 

Moreover, in collaboration with stakeholders working with the poor, the project 

developed new poverty indicators that meet local needs. The results of the 

SAMPLE project will help local authorities and stakeholders to plan and 

implement their poverty-reduction policies. In fact, more than two thirds of 

                                                           
7 http://www.ons.gov.uk/ons/guide-method/method-quality/general-methodology/spatial-analysis-

and-modelling/eurarea/index.html. 
8 http://www.bing.com/search?ei=UTF-8&pc=AV01&q=http%3A%2F%2Fwww.sample-

project.eu%2F&FROM=AVASDF.  

http://www.ons.gov.uk/ons/guide-method/method-quality/general-methodology/spatial-analysis-and-modelling/eurarea/index.html
http://www.ons.gov.uk/ons/guide-method/method-quality/general-methodology/spatial-analysis-and-modelling/eurarea/index.html
http://www.bing.com/search?ei=UTF-8&pc=AV01&q=http%3A%2F%2Fwww.sample-project.eu%2F&FROM=AVASDF
http://www.bing.com/search?ei=UTF-8&pc=AV01&q=http%3A%2F%2Fwww.sample-project.eu%2F&FROM=AVASDF
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stakeholders surveyed said that these local indicators would prove very useful in 

the planning of social policies. The final goal of the project is to provide a 

dashboard of reliable indicators of poverty and deprivation defined at NUTS3, 

NUTS4 level, useful for Local Government Agencies. In the project, the EU-

SILC9 sample will be enlarged at NUTS410.  
The Project was coordinated by Prof. Monica Pratesi, Italy. Consortium of the project: 

Prof. Achille Lemmi, Italy; Dr Nikos Tzavidis, UK; Dr Isabel Molina, Spain ; Prof. 

Domingo Morales, Spain; Prof. Tomasz Panek, Poland; Dr Paolo Prosperini, Dr Claudio 

Rognini, Dr Moreno Toigo, Italy. 

4.2.3. BIAS Project 

The BIAS project is an acronym for ”Bayesian methods for combining 

multiple Individual and Aggregate data Sources in observational studies” project. 

The first edition of the project named BIAS I was funded between April 2005 and 

June 2008 under the first phase of node commissioning. The second edition 

named BIAS II was  funded by the second commissioning phase from July 2008 

to June 2011. Description of BIAS I and BIAS II projects is based on information 

from the web page: www.bias-project.org.uk. 

The aims of the project were: a) to develop a set of statistical frameworks for 

combining data from multiple sources, b) to improve the capacity of social 

science methods to handle the intricacies of observational data. In this project 

Bayesian hierarchical models are used as the basic building  blocks for these 

developments. These offer a natural tool for linking together many different sub-

models and data sources. The BIAS I research programme consisted of three 

methodological components: a)  multiple bias modelling for observational studies, 

b)  combining individual and aggregate level data, c)  small area estimation. 

The last one was especially devoted to small area estimation methodology and 

was being carried out in collaboration with ONS. The basic methodological 

problem was to estimate the value of a given indicator (e.g. income, crime rate, 

unemployment) for every small area, using data on the indicator from individual-

level surveys in a partial sample of areas, plus relevant area-level covariates 

available for all areas from census and administrative sources, for example.  

4.2.4. The AMELI Project  

The project AMELI (Advanced Methodology for Laeken Indicators) was a 

trial to satisfy expectations of the need for effective, high-quality, robust, timely 

and reliable statistics and indicators related to the social cohesion. It started in 

April 2008 and ended in March 2011. The main target of the project was to 

review the state-of-the-art of the existing indicators monitoring the 

multidimensional phenomena of poverty and social exclusion - the Laeken 

indicators including their relation to social cohesion. Special emphasis was put on 

                                                           
9 EU-SILC – an acronym for: European Union Statistics on Income and Living Conditions.   
10 NUTS – an acronym for: Nomenclature of Units for Territorial Statistics.  
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methodological aspects of indicators and especially on their impact on policy 

making. This included quality aspects as well as mathematical and statistical 

properties within a framework of a complex survey in the context of practical 

needs and peculiarities. The official website of the project is: 

http://ameli:surveystatistics:net/. 

The coordinator of the Project was Prof. Ralf Münnich, University of Trier, 

Germany. Consortium consisted of: Federal Statistical Office of Germany, Swiss 

Federal Statistical Office,  Statistics Austria, Statistics Finland, University of 

Helsinki, Vienna University of Technology, Statistical Office of Slovenia, 

Statistics Estonia. 

4.2.5. The ESSnet Project for SAE 

The project lasted 27 months (December 2009 to March 2012). The 

coordinator of the Project was: Stefano Falorsi, ISTAT, Italy. Co-partners: 

INSEE, France; DESTATIS, Germany; CBS, Netherlands; SSB, Norway; GUS, 

Poland; INE, Spain; ONS, United Kingdom; SFSO, Switzerland. 

The general objective of the project was to develop a framework enabling the 

production of small area estimates for ESS social surveys.  

The specific objectives were to: a) complete (thestate of the art  level) the 

EURAREA project, b) update the documents available on small area estimation, 

c) describe the current application in UE NSIs and non-UE NSIs, d) create a 

common knowledge on application of small area estimation methods; e) review 

and develop suitable criteria to assess the quality of SAE methods for the choice 

of proper model and the evaluation of MSE; f) make available software tools for 

SAE to the ESS; g) foster knowledge transfer by the development of case studies 

and associated recommendations on representative problems in small area 

estimation in the ESS; h) provide practical guidelines in ESS social surveys 

context; i) transfer knowledge and know-how to non-participating NSIs and 

disseminate results. 

Results of the project (lessons learned): 

1) The work done and the outcomes produced by the project are strategic for 

increasing the capability within ESS to produce official statistics by SAE 

techniques.  

2) The upload of all outcomes within the EU-cross-portal is very useful for 

disseminating scientific and applicative results of the ESSnet.  

3) It should be useful to try to develop the regular exchange of information about 

SAE methods and applications among NSIs giving impulse to the use of forum 

within the website.  

4) The course was very useful for involving the non-participating NSIs and 

transferring the results of the project within the ESS. It was also useful in order 

to map the real needs of non-participating countries.  

5) The different presentations in scientific workshops and conferences were 

important to disseminate the knowledge of the outcomes of the project.  

http://ameli:surveystatistics:net/
http://www.destatis.de/
http://www.bfs.admin.ch/bfs/portal/en/index.html
http://www.bfs.admin.ch/bfs/portal/en/index.html
http://www.statistik.at/web_en/
http://www.stat.fi/index_en.html
http://www.helsinki.fi/university/
http://www.helsinki.fi/university/
http://www.tuwien.ac.at/
http://www.stat.si/eng/index.asp
http://www.stat.ee/
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6) The survey on the use of methods and available tools within the NSIs of ESS 

and other NSIs has been very useful to map capabilities and application needs. 

This survey should be updated regularly and published into the website.  

The results of the ESSnet project for SAE are strategic for increasing the 

capability to produce official statistics. 

5. Discussion 

Small area estimation methods have been developing significantly over the 

last 30 years and used partially in official statistics. Before small area estimates 

can be considered fully credible, carefully conducted evaluation studies are 

needed to check on the adequacy of the model being used. Sometimes model-

dependent small area estimators turn out to be of superior quality to sample-based 

estimators, and this may make them seem attractive.  

SAE techniques are becoming a matter of great interest for a variety of 

people, including statisticians, researchers and other university experts, and 

institutions, as NSIs, research institutes, governmental bodies, local authorities 

and private enterprises dealing with research methodology, empirical research and 

statistics production for regional areas and other population subgroups.  

SAE methodologies have become a widely used method across various 

disciplines as a result of growing policy makers and researchers’ demand for 

spatially detailed information alongside advances in small area data availability 

and computing power. Currently, despite the potential of these approaches and the 

growing demands placed upon them, there is little agreement within the academic 

and policy community as to which method(s) work best, whether different 

approaches are best suited to different local contexts, how best methods can be 

implemented and how best results can be validated. Experts from across each of 

these methodological strands and across a range of academic disciplines are 

included in the network so as to enable not only improvements in each separate 

approach but also overall methodological progress through the cross-pollination 

of ideas and skills.  

Accuracy is generally considered to be a key measure of quality. Total survey 

error is a conceptual framework describing errors that can occur in a sample 

survey and the error properties. It may be used as a tool in the design of the 

survey, working with accuracy, other quality characteristics, and costs. Accuracy 

is often measured by the mean squared error (MSE) of the estimator. Error 

sources are considered one by one to estimate the uncertainty and also to obtain 

some indication of the importance of that source. The errors arise from: sampling, 

frame coverage, measurement, non-response, data processing, and model 

assumptions. 

Therefore, indirect estimators are constructed that borrow strength from 

related areas, increasing the effective sample size and with it the estimation 

precision. These indirect estimators are based on either explicit or implicit models 
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providing a link between the small area in question and related areas through 

ancillary information. These auxiliary variables can be miscellaneous, cross-

sectional as well as across time, for example information from neighbouring or 

next higher populations, data from a previous census or administrative records. 

Due to the growing demand for reliable small area statistics, small area estimation 

is becoming an important field in survey sampling. 

Weighting is a statistical technique commonly used and applied in practice to 

compensate for nonresponse and coverage error. It is also used to make weighted 

sample estimates conform to known population external totals. In recent years a 

lot of theoretical work has been done in the area of weighting and there has been a 

rise in the use of these methods in many statistical surveys conducted by NSIs 

around the world.  

In the last decade, calibration has been used to reduce both sampling error and 

nonresponse bias in surveys. In the presence of auxiliary variables with known 

population totals or with known values on the originally sampled units, the 

calibration procedure generates final weights for observations that, when applied 

to those auxiliary variables, yield their population totals or unbiased estimates of 

these totals, respectively. Unfortunately, in practice availability of such of 

auxiliary variables is rather not often. 

The move to a more overt modelling approach means that government 

agencies need to recruit and train statisticians who are adept in modelling 

methods, as well as being familiar with survey sampling design. Survey sampling 

needs to be considered a part of mainstream statistics, in which Bayesian models 

that incorporate complex design features play a central role. A Bayesian 

philosophy would improve statistical output, and provide a common philosophy 

for statisticians and researchers in substantive disciplines such as economics and 

demography. A strong research program within government statistical agencies, 

including cooperative ties with statistics departments in academic institutions, 

would also foster examination and development of the viewpoints (Lehtonen et al. 

2002, Lehtonen and Sarndal 2009). 

5.1. Results of international  conferences and projects 

It is difficult to assess the impact of the international conferences and different 

projects on application of SAE methods in official statistics. General conclusion 

is that development and results of SAE methods  in official statistics obtained so 

far from these  conferences and the international projects have been mostly 

academic. Several projects aimed at development of SAE methodology such as 

EURAREA, SAMPLE, BIAS, AMELI, etc. are either completed or still ongoing at a 

country level. Next to these methodologies-oriented projects, quite few projects 

focused on estimating variables for social surveys undertaken by some NSIs. 

What is more, methodological know-how and techniques in SAE differ in NSIs. 

Some of NSIs have a great deal to offer in terms of expertise, links with academic 

experts and experience of implementation of these techniques while some others 
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are just at the empirical stage of practice. The first projects aiming at the 

development of SAE methodology did not highlight differences between 

European NSIs in the way they introduce the SAE methodology into the process 

of producing statistics. Only ESSnet project for SAE provides an overview of 

applications to social statistics for many European and some non-European NSIs. 

Furthermore, this project describes the research of the NSIs concerning SAE, 

which eventually will lead to a greater number of applications. 

As it has been already stressed, the application of model-based estimation 

procedures in official statistics is limited. Several factors have been mentioned for 

the slow adoption of these methods. One is the fact that many NSIs are rather 

reserved in the application of model-based estimation procedures and generally 

rely on the more traditional design-based or model-assisted procedures for 

producing their official statistics. NSIs need to play safe in the production of 

official statistics and therefore do not want to relay on model assumptions, 

particularly if they are not verifiable (Chambers et al, 2006; Brakel & Betheyem, 

2008; Eurarea, 2004; Little, 2004, 2012). 

The availability of small area data has improved dramatically since the 1990s 

yet many spatial variables of interest – income, fear of crime, health-related 

behaviours, and so the list goes on – remain impossible to access at small area 

geographies in many national contexts. Within this context SAE methodologies 

have become increasingly demanded, increasingly used and increasingly refined. 

Yet the methodological landscape around SAE remains in need of attention in at 

least three key ways, according to Whitworth  A. (edt)11. “Firstly, various 

alternative SAE methodologies have emerged and it is often unclear to some 

researchers what these alternative approaches are, how they relate to each other 

and how they compare in terms of their estimation performance. These 

methodological approaches can be classified broadly either as spatial 

microsimulation (which tend to be used by geographers predominantly) or 

statistical approaches (the use of which is dominated by statisticians). Secondly, 

despite recent advances in SAE methodologies there remain key methodological 

challenges and uncertainties to explore (e.g. how exactly each method can be best 

implemented in relation to weights, constraints, seeding, etc.) as well as 

innovative methodological advances to be brought together and extend (e.g. any 

role for agent-based modelling, estimating distributional functions or spatially 

varying interactions). Thirdly, the different methodological approaches to SAE in 

large part operate in parallel to one another without a clear understanding of the 

conceptual and methodological linkages between them. This is particularly true 

between the statistical and spatial microsimulation approaches and greater 

understanding of the linkages between methodologies within these two differing 

approaches could support important contributions to the effectiveness of current 

SAE best practice”. 

                                                           
11 http://eprints.ncrm.ac  .uk/3210/1/sme_whitworth.pdf.   

http://eprints.ncrm.ac.uk/3210/1/sme_whitworth.pdf
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Nevertheless, SAE methods have been used in applications including 
employment and unemployment statistics, health, poverty, agriculture, business, 
demography, census undercount,  ecology, and education (Datta et al.,1999, 
2002; Dehnel, 2010; Dick, 1995; Drew et al., 1982; Elazar, 2004; Esteban et al., 
2012; Gambino et al., 1998, 2000;  Dehnel et al., 2004; Golata, 2004; Hidiroglou 
et al., 1985, 2007; Kordos, 1994, 2006; Kubacki, 2004; Molina et al., 2010; 
Paradysz, 1998;  Paradysz & Dehnel, 2005; Schaible et al., 1994). 

5.2. Differentiation in utilization of SAE methods by NSIs  

As it has been stressed, NSIs are facing increasing demand for statistics below 
the level for which most large scale surveys have been designed. The survey 
methodologists are turning toward SAE techniques to satisfy the need for reliable 
estimates for small domains.  

However, there are some common characteristics connected with applications 
of SAE procedures in official statistics. Usually such applications are prepared 
and implemented in cooperation with academic statisticians or subject-matter 
specialists and official statisticians. Very often there are still R&D approaches. It 
is impossible to discuss the differences by countries here, but the author confines 
himself to some issue connected with R&D in this field and quality aspects of the 
results. The author has found a number of very interesting publications in the 
Internet connected with applications of SAE methods in different fields and 
countries. Some of them include: Statistics Canada12; USA – Bureau of Census13; 
U.K- Office for National Statistics (ONS)14 and Australian Bureau of Statistics15. 
The author would like to add the network, funded by the ESRC's National Centre 
for Research Methods (NCRM) Programme, which brings together experts in 
small area estimation techniques from the academic and policy (e.g. Office for 
National Statistics) communities in the UK and internationally in order to seek 
innovative ways to advance knowledge and understanding in SAE 
methodologies16.  

As it has already been stressed, it is impossible to discuss the differentiation 
of application of SAE procedures in different countries here, but the following 
issues will be considered: a) Assessing the quality of small area estimates;  
b) Communicating quality to users. 

“A Guide to Small Area Estimation” published by the Australian Bureau of 
Statistics17 has been mainly used here. 

                                                           
12 http://www.bing.com/search?ei=UTF-8&pc=AV01&q=Small+area+estimation+in+ 

 Statistics+Canada&FROM=AVASDF&first=71&FORM=PORE.  

    http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&SDDS=3604#a3  
13 www.census.gov/hhes/www/saipe/documentation.html.  

    http://www.census.gov/did/www/saipe/methods/10change.html. 
14 U.K. ONS: http://www.ons.gov.uk/ons/guide-method/method-quality/survey-methodology-bulletin/. 
15 http://www.nss.gov.au/nss/home.NSF/pages/Small+Areas+Estimates?OpenDocu. 
16 http://www.bing.com/search?ei=UTF-8&pc=AV01&q=Evaluations+and+improvements+in+ 

small+area+estimation+methodologies++Adam+Whitworth+%28edt%29%2C+University+of+ 

Sheffield&FROM=AVASDF.   
17 http://www.nss.gov.au/nss/home.NSF/pages/Small+Areas+Estimates?OpenDocu. 

http://www.ncrm.ac.uk/
http://www.ncrm.ac.uk/
http://www.bing.com/search?ei=UTF-8&pc=AV01&q=Small+area+estimation+in+%20Statistics+Canada&FROM=AVASDF&first=71&FORM=PORE
http://www.bing.com/search?ei=UTF-8&pc=AV01&q=Small+area+estimation+in+%20Statistics+Canada&FROM=AVASDF&first=71&FORM=PORE
http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&SDDS=3604#a3
http://www.census.gov/hhes/www/saipe/documentation.html
http://www.census.gov/did/www/saipe/methods/10change.html
http://www.ons.gov.uk/ons/guide-method/method-quality/survey-methodology-bulletin/
http://www.nss.gov.au/nss/home.NSF/pages/Small+Areas+Estimates?OpenDocu
http://www.bing.com/search?ei=UTF-8&pc=AV01&q=Evaluations+and+improvements+in+small+area+estimation+methodologies++Adam+Whitworth+%28edt%29%2C+University+of+Sheffield&FROM=AVASDF
http://www.bing.com/search?ei=UTF-8&pc=AV01&q=Evaluations+and+improvements+in+small+area+estimation+methodologies++Adam+Whitworth+%28edt%29%2C+University+of+Sheffield&FROM=AVASDF
http://www.bing.com/search?ei=UTF-8&pc=AV01&q=Evaluations+and+improvements+in+small+area+estimation+methodologies++Adam+Whitworth+%28edt%29%2C+University+of+Sheffield&FROM=AVASDF
http://www.nss.gov.au/nss/home.NSF/pages/Small+Areas+Estimates?OpenDocu
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5.3. Assessing the quality of small area estimates 

Small area estimates are usually obtained by fitting statistical models to 

survey data and then applying these models to auxiliary information available for 

the small area population of interest. Often a number of potential or candidate 

models are considered involving various combinations of the auxiliary variables.  

The most reliable of these candidate models is then chosen as the final model, 

on the basis of: 

 plausibility of the model in light of previous studies or accepted wisdom; 

 how well the model fits the observed data; and, 

 accuracy of the small area estimates predicted from the model. 

In light of this, there is a need to examine various quality diagnostics to 

determine which of the candidate models to use. Having chosen a model, it is then 

necessary to provide users with an assessment of its quality as well as the quality 

of the small area estimates produced from it. In doing so, ranges of diagnostics are 

used to assess the accuracy, validity and consistency of the small area estimates. 

These include: 

 a bias test that compares the small area predictions with direct estimates; 

 testing whether model assumptions are met and that the model is a good fit; 

 checking that small area estimates add to published state or national 

estimates; 

 local knowledge and expert advice on the spread of estimates across small 

areas; and, 

 relative root mean squared errors (RMSE) - in modelling these are 

analogous to sampling errors calculated for survey estimates. 

Although these diagnostics are crucial in terms of assessing the relative 

performance of competing small area models, they have to be supported by good 

judgement from practitioners and expert advice from users. 

5.4. Communication with users on quality of accepted results 

From current practice we may draw conclusions that there are problems with 

users’ communication regarding quality of accepted results. There are several 

propositions to improve this practice, but it is suggested to consider the following 

Trewin’s proposition. 

Trewin (1999) encouraged NSIs to make greater use of small area estimation 

methods to generate statistical output. However, in doing so, he emphasised that: 

a) “the estimates need to be branded differently from other official statistics 

 (the methods and the assumptions should be described in any releases); 

b) their validity needs to be assessed to provide user confidence;     
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c) the underlying models need to be described in terms that users can 

understand and the validity of the underlying assumptions should be 

discussed with the key users; 

d) their quality should be described in quantitative terms as far as possible; 

and  

e) there should be peer review of the models by an expert as the models are 

very complex and the choice of methods is considerable.” 

The author would like to add in this section the Eurostat publication (Eurostat, 

2007) devoted to data quality assessment, presenting different methods and tools. 

6. Concluding remarks 

Small area estimation methods have been developing significantly over the 

last 30 years and used partially in official statistics. Before small area estimates 

can be considered fully credible, carefully conducted evaluation studies are 

needed to check on the adequacy of the model being used. Sometimes model-

dependent small area estimators turn out to be of superior quality to sample-based 

estimators, and this may make them seem attractive. 

It seems reasonably to give some recommendations and suggestions compiled 

from different papers, conferences and projects related to SAE methods: 

1. Good auxiliary information related to the variables of interest plays a vital role 

in model-based estimation. Expanded access to auxiliary data, such as census 

and  administrative data, through coordination and cooperation among federal 

agencies is needed. 

2. Preventive measures at the design stage may reduce the need for indirect 

estimators significantly. 

3. Model selection and checking plays an important role. External evaluations are 

also desirable whenever possible. 

4. Area-level models have wider scope because area-level data are more readily 

available. But assumption of known sampling variance is restrictive. 

5. HB approach is powerful and can handle complex modelling, but caution 

should be exercised in the choice of priors on model parameters. Practical 

issues in implementing HB paradigm should be addressed. 

6. Model-based estimates of area totals and means are not suitable if the 

objective is to identify areas with extreme population values or to identify 

areas that fall below or above some pre-specified level. 

7. Suitable benchmarking is desirable. 

8. Model-based estimates should be distinguished clearly from direct estimates. 

Errors in small area estimates may be more transparent to users than errors in 

large area estimates. 
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9. Proper criterion for assessing quality of model-based estimates is whether they 

are sufficiently accurate for the intended uses. Even if they are better than 

direct estimates, they may not be sufficiently accurate to be acceptable. 

10. Overall program should be developed that covers issues related to sample 

design and data development, organization and dissemination, in addition to 

those pertaining to methods of estimation for small areas. 
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A COMPARISON OF SMALL AREA AND 

CALIBRATION ESTIMATORS VIA SIMULATION 

M. A. Hidiroglou1, V. M. Estevao 2  

ABSTRACT 

Domain estimates are typically obtained using calibration estimators that are 

direct or modified direct. They are direct if they strictly use data within the domain 

of interest. They are modified direct if they use both data within and outside the 

domain of interest. An alternative way of producing these estimates is through 

small area procedures. In this article, we compare the performance of these two 

approaches via a simulation. The population is generated using a hierarchical 

model that includes both area effects and unit level random errors. The population 

is made up of mutually exclusive domains of different sizes, ranging from a small 

number of units to a large number of units. We select many independent simple 

random samples of fixed size from the population and compute various estimates 

for each sample using the available auxiliary information. The estimates 

computed for the simulation included the Horvitz-Thompson estimator, the 

synthetic estimator (indirect estimate), calibration estimators, and unit level based 

estimators (small area estimate). The performance of these estimators is 

summarized based on their design- based properties. 

Key words: area level, unit level, calibration estimates, small area estimates, 

simulation. 

1. Introduction 

Domain estimates at Statistics Canada are typically obtained using 

well-established methods based on calibration estimation. The calibration is direct 

or modified direct. It is direct if it is based on data within the domain of interest. 

It is modified direct if it is based on data within and outside the domain of interest. 

These methods can be viewed as design-based procedures as the variance of the 

resulting estimators is evaluated under the randomization distribution. The 
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randomization distribution of an estimator is the distribution over all possible 

samples that could be selected from the target population of interest under the 

sampling design used to select the sample, with the population parameters 

considered as fixed values. Another way of producing these estimates is through 

small area methods. These methods are particularly important when the sample 

size in the domains is “small.” They can improve the reliability of the direct 

estimates provided that the variable of interest is well correlated with auxiliary 

variables x that are available from administrative or other files. Small area 

estimation essentially combines direct estimates with model-based estimates in an 

optimal manner. 

The model-based estimates involve known population totals (auxiliary data) 

and estimates of the regression between the variable of interest and the auxiliary 

data across the small areas. In general, these models are classified into two groups: 

unit level models and area level models. Unit level models are generally based on 

observation units (e.g., persons or companies) from the survey and auxiliary 

variables associated with each observation, whereas area level models are based 

on direct survey estimates aggregated from the unit level data and related area 

level auxiliary variables; see Rao (2003) for an overview of small area models. 

The more recent literature that covers empirical assessment of the properties of 

various small area and domain estimators includes Lehtonen and Veijanen (2009), 

Datta (2009), and Pfeffermann (2013). Lehtonen and Veijanen (2009) focused on 

design-based methods (calibration and regression) using auxiliary data. They 

reviewed the work on the extension of the linear form of the Generalized 

Regression Estimator (GREG) given in Särndal et al. (1992) to include logistic, 

multinomial logistic and mixed models for domain estimation. Datta (2009) 

reviewed the development of model-based procedures to obtain small area 

estimates. Datta focussed in particular on the theoretical properties of the resulting 

estimators. Pfeffermann (2013) reviewed both design-based and model-based 

procedures, as well as recent developments in these two procedures. 

Domain estimates are currently obtained via design-based procedures at 

Statistics Canada. However, the increasing requirement for producing estimates 

for "small domains" has encouraged the need to adopt model-based procedures. A 

SAS-based prototype (Estevao et al. 2014) has been recently developed at 

Statistics Canada to respond to these requirements. The prototype currently 

incorporates two well-known methods initially developed by Fay and Herriot 

(1979) for area level estimation, and Battese, Harter, and Fuller (1988) for unit 

level estimation. Although the theoretical properties of the estimators included in 

the prototype are known, they were investigated via a simulation. In the 

simulations, we looked at the properties of estimators of domain totals. We 

compared model-based small area estimators with traditional estimators through 

simulation. The latter included the Horvitz-Thompson estimator, two calibration 

estimators, the modified regression estimator and the synthetic estimator. The 

small area estimators are the EBLUP and Pseudo EBLUP estimators based on a 

unit level model. More details on all of these estimators are given in section 2. 
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The simulation setup and results are reported in section 3. Section 4 provides a 

few conclusions from our findings. 

2. Sample design 

Large scale surveys are designed to satisfy reliability requirements for some 

subsets (domains) of the population. Examples of these subsets include partitions 

below the level of the initial geographical / industrial detail requested by the client. 

If such subsets are required before the sample is selected, then such domains are 

labelled as planned domains (Singh, Gambino and Mantel 1994). Such planned 

domains will have some of the sample allocated to them to obtain unbiased 

estimates with the required precision using direct estimation procedures. If these 

domains are identified after the sample has been selected, they will be known as 

unplanned domains. Note that, in any event, unplanned domains will exist for 

most surveys. An example taken from business surveys is a change of industry 

during data collection. A business initially classified as industry A becomes 

industry B. Such a business would be tabulated as part of the businesses of type 

B, but would retain its original sampling weight. Another example, taken from 

household surveys, would be the arbitrary production of estimates below a 

geographical level that was not part of the allocation process of the sample. 

Traditional or small area estimators can be used for either planned or unplanned 

domains.  

As domain estimation for most surveys at Statistics Canada is mostly of the 

unplanned type, we have designed our simulation to reflect this tendency: that is 

no units are allocated to them prior to sample selection. Domain estimates are 

produced after sample selection, and the number of sampled units falling in each 

domain is a random variable. Our simulation reflects this point, and we used the 

simplest sample design to carry it out. We drew repeated samples s of size n from 

the population U of size N using simple random sampling without replacement. 

The weight associated with unit j U is denoted as jw . Let ds , 1,2,...,d D , be 

the portion of the sample s that overlaps with domain dU  (of known size dN  ). 

Let the realized sample size in domain dU  be dn . The survey design weight 

associated with a unit dj U  is jw . The data in the population are denoted as 

 ,j jy x for each element j U . The y variable is the one of interest, while x is 

the vector of auxiliary data. Computation of domain statistics can be obtained 

using the operators (i.e.: mean and variance) in regular estimation via the 

following transformation. In domain dU , we denote the variable of interest as d jy  

where d j j dy y j U  if   and 0 otherwise. The associated vector of auxiliary 

variables is defined as d jx  where d j j dj U  if x x and 0 otherwise.  
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The objective of the present study is to compare the properties of model-based 

small area estimators for domains with those traditionally used in survey 

estimation. We considered seven estimators of the domain total
d d jj U

Y y


 : 

four are traditional estimators and three are small area estimators. We first present 

the traditional estimators.  

2.1. Traditional estimators 

Horvitz-Thompson: The Horvitz-Thompson estimator ˆd HTY , 1,2,...,d D , uses 

no auxiliary information. It is defined as 
ˆ
d HT j d j

j s

Y w y


  if 0dn   and 0 

otherwise. We set ˆd HTY  to 0 if there are no sampled units in the domain, ensuring 

unbiased estimation over all samples s drawn from U. Although this estimator is 

unbiased, it produces inefficient estimates. 

Calibration Estimators: We consider two calibration estimators, ˆ
dd CALUY  and 

ˆ
d CALUY , that use auxiliary information at different levels. They are applications 

of calibration given in Deville and Särndal (1992) adapted to domain estimation. 

The direct estimator ˆ
dd CALUY  uses auxiliary information at the domain level, while 

the modified direct estimator ˆd CALUY  uses information at the population level. 

Estimator ˆ
dd CALUY  is known to be more efficient than ˆ

d CALUY . However, 

estimator ˆ
dd CALUY  has some drawbacks. It is not always possible to obtain 

auxiliary information at the domain level. Even if this information is available, we 

cannot produce estimates using ˆ
dd CALUY  if there are no sample units in the 

domain. Furthermore, this estimator can produce erratic values when there are 

only a few units in the domain. To prevent this, we need to make sure that the 

number of units in the domain is larger than the number of auxiliary variables. As 

a minimal requirement, given that there are two auxiliary variables (intercept, x),  

ˆ
dd CALUY  can be estimated only if there are 3 or more units in a domain. Otherwise, 

we cannot produce a value, and we set it to missing. This means that we only work 

with a subset of all possible samples. If we set the value of ˆ
dd CALUY  to 0 when 

there is an insufficient number of observations dn  in domain dU , this would 

result in a biased estimator. As for ˆd CALUY , when there are no sample units in the 

domain, we set the value of this estimator to 0. This ensures that it is 
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approximately design unbiased for the domain total. Estimator ˆ
dd CALUY ,

1,2,...,d D , is given by:  

 

   

ˆˆ( )  if  3
ˆ

.  (missing)                                        if  3

d

d

T
j d j d d HT d CALU d

j
dCALU

d

s

w y n
Y

n



   


 
 

 X X β
 

with 
d d j

j U

 X x , ˆ
d HT j d j

j s

w


 X x and  

       

1

ˆ
d

T
j d j d j j d j d j

d CALU
j jj js s

w w y

c c



 

 
 
 
 

 
x x x

β . 

Estimator ˆd CALUY , 1,2,...,d D , is given by:  

   

ˆˆ( ) 0
ˆ

0 0

T
j d j HT CALU d

j
dCALU

d

s

w y n
Y

n



   


 
 

  if 

                                     if 

X X β
 

with 
j

j U

 X x , ˆ
HT j j

j s

w


 X x  and 

1

ˆ
T

j j j j j j

CALU
j jj js s

w w y

c c



 

 
 
 
 

 
x x x

β . 

Modified Regression (REG): The modified regression estimator ˆ
d REGY ,

1,2,...,d D , is due to Woodruff (1966). It is of interest as it was used to produce 

area breakdowns of the monthly national estimates of US Census Bureau retail 

trade survey. Note that it is a modified direct estimator. Singh and Mian (2003) 

points out that it can be viewed as a calibration estimator dj js
w y , where the 

calibration weight djw  is obtained by minimizing the chi-squared distance 

  /j j d j dj js
c w a w w , subject to the constraints dj j ds

w  x X : here d ja  is 

the domain indicator variable.  Estimator ˆd REGY  is design-unbiased as the overall 

sample size increases. It is given by:  

    

ˆˆ( ) 0
ˆ

ˆ 0

 if 

                                if 

d

T
d j d j d d HT REG d

j
d REG

T
d REG d

s

w y n

Y

n



   


 
 

 X X β

X β
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with

d

d d j
j U

 X x , ˆ
d HT j d j

j s

w


 X x and 

1

ˆ
T

j j j j j j

REG
j jj js s

w w y

c c



 

 
 
 
 

 
x x x

β . 

The jc  term, 0jc  , associated with the estimators that use auxiliary data 

reflects that the error terms je  in the implied working model are distributed 

independently with mean zero and variance
2 2

j ec  . 

2.2. Small area estimators 

The simplest small area estimator is the synthetic estimator (SYN), ˆd SYNY ,

1, 2,..., .d D  It is given by ˆˆ T
d SYN d SYNY  X β  where 

d
d d jj U
X x  and 

1

ˆ
T

j j j j j j

SYN
j jj js s

w w y

c c



 

 
 
 
 

 
x x x

β . This estimator is design-biased, given by 

ˆ ( ) T
d SYN d dBias Y YX B , where 

1
T

j j j j

j U j Uj j

y

c c



 

 
 
 
 
 

x x x
B  is the population 

regression vector. 

 

The next two  small area estimators are based on a hierarchical model given 

by: 
T

d j d j d d jy v e  x β ,            (1) 

where 
2(0, )

iid

d vv N  ,
2 2(0, )

iid

d j d j ee N c  , and d jc accounts for possible 

heterogeneity of the d je  residuals. 

In our application of this model, the areas are our domains of interest. The 

quantity 
T
d jx β  is the fixed effect which is assumed to be a linear combination of 

the auxiliary variables ijx . The residuals dv  and d je  are respectively the random 

effect for the area d and the random errors for unit j in area d. The term 
2
d jc  

translates to 
2

d j d ja c  in the various formulas that follow. 

 



STATISTICS IN TRANSITION new series and SURVEY METHODOLOGY               139 

 

Empirical Best Linear Unbiased Predictor (EBLUP): This estimator denoted 

as ˆ
d EBLUPY , 1,2,...,d D , is given in Rao (2003, p.136). It is an extension of the 

Battese, Harter, and Fuller (1988) estimator when the error structure of the 

residuals is not homogeneous. It is given by:  

 

  
ˆ ˆˆ{ ( )} 0

ˆ
ˆ 0

T T
d d EBLUP da da da EBLUP d

d EBLUP T
d EBLUP d

N y n
Y

n

   
 



X β x β

X β

 if 

                                        if 
 

The terms making up ˆd EBLUPY  include dN , dX , ˆda day dax ,  and  ˆEBLUPβ .  These 

terms are defined as follows: 
d

d
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 where 2 1

d

da
d jj s
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. The estimated regression vector is 

given by: 

 

1

1 1

ˆ ˆ ˆ( ) ( )

d d

D D
T

EBLUP d j dj da da d j dj dj da da d j
d j s d j s

a a y 



   

 
    
 
   β x x x x x . 

This estimator is not design consistent, unless the sampling design is self-

weighting. 

Pseudo-EBLUP (PEBLUP): This estimator denoted as ˆd PEBLUPY , 1,2,...,d D , 

is an extension of the Pseudo-EBLUP estimator given in You and Rao (2002). It 

accounts for the heterogeneity of the d je  residuals in model (1). It includes the 

survey weights ,jw j s , in the regression coefficient and the parameter 

estimate. 
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T
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       if 

                                          if 
 

The terms making up ˆd PEBLUPY  include dN , dX , dwy , dwx , dwy , and  ˆPEBLUPβ . 

These terms are defined as follows: 
d
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The estimated regression vector is given by:
1

1 1

ˆ ˆ ˆ( ) ( )

d d

D D
T

PEBLUP j d j dj dwa dwa i j j d j dj dwa dwa d j
d j d js s

w a w a y 



   

 
    
 
   β x x x x x

with  
d

d

j dj d jj s

dwa
j d jj s

w a

w a










x
x  and 

2

2 2 2

ˆ
ˆ

ˆ ˆ

v
dwa

v e dwa




  



  

where  

 

2

2

2

( )

d

d

j d j

j s
d j

dwa

j d jj s

w a

a

w a













. 

 

This estimator is design consistent. 

3. Simulation 

Surveys produced at Statistics Canada can be as simple as stratified one stage 

simple random sampling designs typically used for business surveys to the more 

complex stratified multi-stage design with unequal selection probabilities at each 

stage typically used for household surveys. We opted for a single stage simple 

random sample selected from the population, as it is a simplification of the sample 

designs used for business surveys. Had we chosen a sampling design with unequal 

weights, we would have had to account for the possible impact of informative 

sampling on the small area estimators using the procedure given in Pfeffermann 

and Sverchkov (2007). Verret, Rao, and Hidiroglou (2015) used a simpler 

procedure than the one given in Pfeffermann and Sverchkov (2007). Their 

procedure accounted for unequal selection probabilities for model-based small 

area estimators by incorporating them into the model. Their simulation used a 

design-model (pm) approach. Their results showed that incorporating the unequal 

selection probabilities significantly improved the performance (average absolute 

bias and average RMSE) of EBLUP, but had marginal impact on PEBLUP.  

3.1 Population Generation and Sample Selection 

A population U consisting of 4,640 units was created by generating data 

( , )ij ijx y  for three separate subsets of the population (groups) with different 

intercepts and slopes. Each group was split into mutually exclusive and exhaustive 

domains as follows: Group 1 was split into nine domains 91,...,U U ; Group 2 was 

split into ten domains 110 9,...,U U ; and Group 3 was split into ten domains 

220 9,...,U U . The three groups resulted in a total of D=29 domains that were 

mutually exclusive and exhaustive. The number of units in each domain, dN , was 
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allocated in a monotonic manner: domain U1 had 20 units; domain U2 had 30 units; 

and domain 29U  had 300 units. In our simulation the auxiliary data  x  consisted 

of two auxiliary variables. The first one had the fixed value of one to represent the 

intercept in the model. The second one, x , represented the available auxiliary data 

in the population. The auxiliary variable x in each group was generated from a 

( 5, 10)Gamma     distribution with mean 50   and variance 

2 500  . The variable of interest y was generated using the model 

       0, 1, :  =1,2,3d j d j d d jy x v e      (2) 

where 
2(0, )

iid

d vv N   and 
2 2(0, )

iid

d j d j ee N c  . 

We used 2 2 220 400v e     and set 
2
d jc  equal to d jx . The following table 

summarizes how the population was split into the three groups of domains. 

Table 1. Groups, associated domains and regression parameters 

Group ( ) Domains in Group 0,  1,  

1 dU   for d=  1,...,  9 200 30 

2 dU  for d=10,...,19 300 20 

3 dU  for d =20,...,29 400 10 

A plot of the generated population is shown in Figure 1. The units in the 

groups are shown respectively in green, blue and yellow. The three regression 

lines are shown in red. Without the colours to identify the groups, one might be 

inclined to think that the population was generated under a model with a single 

auxiliary variable (one intercept and slope) as shown in the inset. 

 

Figure 1.  Plot of y vs. x for population in the simulation study 
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We ran two separate simulation “runs” to reflect that two possible models 

could be fitted for the selected samples. We denote these simulations as runs 1 

and 2. In the first run (simulation run 1), we assumed that the model could be fitted 

using (1, )d j d jxx  as auxiliary data; this is not correct as the population was 

generated on the basis of three different regressions. In the second run (simulation 

run 2), we acknowledged that there  were three separate models and used a set of 

auxiliary variables reflecting the manner in which the population values were 

generated; this fit is correct. This meant using a set of dummy-coded auxiliary 

variables defined as follows for each unit: 

 

 

 

 

 

1,0,0, ,0,0   if  group 1 

0,1,0,0, ,0   if  group 2 

0,0,1,0,0,   if  group 3 

d j d

T
d j d j d

d j d

x j U

x j U

x j U

  



  


 


x

  (3)  

In the small area estimation model given by equation (1), the use of this d jx  

implies the following regression coefficient  1 2 3 4 5 6, , , , ,
T

     β  for the 

fixed effects. For the synthetic estimator and the calibration estimators, we set 

i j i jc x  to reflect the heterogeneity of the model errors. 

Each simulation run involved the selection of R=100,000 independent samples 

and the computation of various estimates for each sample. Each sample was a 

simple random sample s of size n selected without replacement from U. We used 

sample sizes n=232 (5%), n=464 (10%), n=696 (15%) and n=928 (20%), where 

the sampling fractions are indicated in brackets. These are within the range of the 

sampling fractions typically used by business surveys. 

The sample units in domain dU  are denoted by ds  with 
1

D
dd

s s


  . We 

observed dn  units in dU  where 0 d dn N   and 1

D
dd

n n


 . Under simple 

random sampling without replacement, the dn  follow a multivariate 

hypergeometric distribution with probability mass function 1

dD

d
d

N N

n n

   
   

  
  . 

The following table shows the probability of observing 0dn  , 1dn   or 

2dn   in the three smallest domains when the sample size n is 232. 
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Table 4. Probabilities in the 3 smallest domains when n = 232 

Probability 1U  with 1 20N   
2U  with 

2 30N   

3U  with 

3 40N   

Prob ( 0)dn   0.358 0.214 0.127 

Prob ( 1)dn   0.378 0.339 0.271 

Prob ( 2)dn   0.189 0.260 0.279 

Using table 4, for the smallest domain 1U , ˆd HTY  and ˆd CALUY  would be equal 

to zero about 36% of the time. Note that this probability decreases rapidly as the 

domain population size dN  increases. Since we require 3dn  , we cannot 

produce an estimate for ˆ
dd CALUY  in approximately 92.5% of the samples selected 

in the smallest domain 1U . This probability decreases rapidly as the domain 

population size dN  increases. 

3.2. Simulation statistics 

For each selected sample in each simulation run  r = 1,...,R  (R=100,000),  we 

computed estimates of dY  for the seven estimators. Denote 
( )ˆ r

d ESTY  as the estimate 

produced for the 
thr  sample, 1, 2,...r R , where the subscript ‘EST’ is a 

placeholder for any one of the seven estimators. For each domain d=1,...,29, we 

computed the bias as:   

        
( )1

1
ˆ ˆ( )

R r
d EST dd ESTr

Bias Y R Y Y


   

 and the mean squared error as 

        
2

1 ( )
1

ˆ ˆ( ) .
R r

d EST dd ESTr
MSE Y R Y Y


   

For each estimator, ˆd ESTY , we also computed the following summary statistics 

across all domains and simulated samples. These were the average absolute 

relative bias, the average coefficient of variation and the average relative 

efficiency denoted as ˆ( )ESTARB Y , ˆ( )ESTCV Y  and ˆ( )ESTRE Y  respectively.  
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These were computed as follows: 

 

1

1

1

ˆ( )1ˆ ˆ ˆ( ) ( )   where  ( )

ˆ( )1ˆ ˆ ˆ( ) ( )   where  ( )
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EST d EST d ESTd
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ARB Y ARB Y ARB Y

D Y

MSE Y
CV Y CV Y CV Y

D Y

MSE Y
RE Y MSE Y MSE Y

DMSE Y







 

 

 







(4) 

The statistic ˆ( )ESTRE Y  measures the average efficiency of each estimator 

relative to the Horvitz-Thompson estimator. Since ˆd HTY  is known to have the least 

efficiency among these seven estimators, this measure is a number larger than or 

equal to 1. 

3.3. Simulation Results 

Tables 5, 6 and 7 show the differences between the two runs using the 

summary statistics described in the previous section. The results are discussed 

after each of these three tables for runs 1 and 2. 

Table 5. Average Absolute Relative Bias ˆ( )dESTARB Y  

 Traditional Domain Estimators Small Area Estimators 

Sample 

Size 

Run ˆ
dHTY  ˆ

dd CALUY  ˆ
d CALUY  

ˆ
d REGY  ˆ

dSYNY  ˆ
dEBLUPY  ˆ

dPEBLUPY  

232 1 0.12 0.16 0.15 0.19 24.18 7.58 4.12 

 2 0.11 0.15 0.36 0.05 1.33 1.07 1.08 

464 1 0.08 0.08 0.09 0.10 24.18 6.71 2.24 

 2 0.06 0.07 0.19 0.02 1.33 0.95 0.96 

696 1 0.06 0.05 0.06 0.06 24.18 6.43 1.52 

 2 0.05 0.04 0.11 0.02 1.33 0.84 0.86 

928 1 0.06 0.03 0.06 0.04 24.18 6.29 1.14 

 2 0.05 0.03 0.09 0.01 1.33 0.76 0.77 
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Model does not fit (Run 1): The small area estimators ˆ
dSYNY , ˆdEBLUPY , and 

ˆ
dPEBLUPY  have the largest ARB s. In particular, ˆdSYNY  has the highest ARB . The 

ARB  decreases as the sample size increases for ˆdEBLUPY  and ˆdPEBLUPY , whereas 

it remains constant (as expected) for ˆdSYNY . The ARB  associated with ˆdPEBLUPY  

decreases more rapidly than the one associated with ˆdEBLUPY  as the sample size 

increases. The ARB  associated with the traditional domain estimators is quite 

small: it also decreases as the sample size increases. 

Model fits (Run 2): The ARB s associated with the small area estimators have 

significantly decreased. However, they are still higher than those associated with 

the traditional domain estimators. ˆ
d REGY  has the smallest ARB  amongst all the 

estimators. As noted in run 1, the ARB  decreases as the sample size increases for 

all the estimators. 

Table 6. Average Coefficient of Variation ˆ( )dESTCV Y  

 Traditional Domain 

Estimators 
Small Area Estimators 

Sample 

Size 

Run ˆ
dHTY  ˆ

dd CALUY  ˆ
d CALUY  ˆ

d REGY  ˆ
dSYNY  ˆ

dEBLUPY  ˆ
dPEBLUPY  

232 1 42.79 6.57 42.81 12.82 24.27 9.90 7.93 

 2 42.77 6.39 42.04 4.47 2.17 2.22 2.21 

464 1 29.41 4.09 29.40 8.84 24.22 8.18 5.36 

 2 29.45 4.36 28.64 3.10 1.82 1.77 1.77 

696 1 23.33 2.98 23.32 7.02 24.21 7.49 4.20 

 2 23.36 3.01 22.64 2.46 1.69 1.54 1.55 

928 1 19.61 2.38 19.59 5.90 24.20 7.10 3.49 

 2 19.61 2.35 18.96 2.07 1.61 1.39 1.40 

 

Model does not fit (Run 1): Estimators ˆdHTY  and ˆd CALUY  have the highest CV  

among all estimators; their CV s are quite comparable, implying that auxiliary 
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data used at the population level in ˆ
d CALUY  has no impact on improving the 

reliability of the estimator at the domain level. The synthetic estimator ˆdSYNY  also 

has a high CV  that remains constant no matter what the sample size is. The 

calibration estimator ˆ
dd CALUY  has the lowest CV  for all sample sizes. The ranking 

from low to high of the remaining three estimators is ˆd PEBLUPY , ˆdEBLUPY  and 

ˆ
d REGY . Note that the CV  of ˆd REGY  decreases quite rapidly as compared to the 

other estimators. The reliability of all the estimators improves as the sample size 

increases. 

Model fits (Run 2): The CV s are smaller than those obtained in run 1 for all 

estimators except for ˆdHTY  and ˆd CALUY . This is expected as both estimators do 

not profit from the auxiliary data. These two estimators are still the ones with the 

highest CV s. As expected, because the model fits well, all three small area 

estimators ˆdSYNY , ˆdEBLUPY  and ˆdPEBLUPY  have reasonable CV s. The modified 

regression estimator ˆd REGY  performs better than the calibration at the domain level 

ˆ
dd CALUY : the reverse was true when the model was incorrect (run 1). 

Table 7. Average Relative Efficiency ˆ( )dESTRE Y  

 
Traditional Domain 

Estimators 
Small Area Estimators 

Sample 

Size 
Run ˆ

dHTY  ˆ
dd CALUY  ˆ

d CALUY  ˆ
d REGY  ˆ

dSYNY  ˆ
dEBLUPY  ˆ

dPEBLUPY  

232 1 1.00 6.43 1.00 3.48 1.50 4.04 5.48 

 2 1.00 6.57 1.03 8.48 13.23 13.97 13.96 

464 1 1.00 7.39 1.00 3.47 1.03 3.25 5.59 

 2 1.00 7.18 1.04 8.43 9.84 11.72 11.64 

696 1 1.00 7.87 1.00 3.47 0.82 2.75 5.62 

 2 1.00 7.85 1.04 8.41 8.03 10.67 10.56 

928 1 1.00 8.07 1.00 3.46 0.69 2.40 5.64 

 2 1.00 8.10 1.04 8.40 6.84 10.06 9.95 

Note: The higher the number the more efficient the estimator relative to the HT estimator. 

Recall that run 1 represents the results when the model does not fit, whereas run 2 

represents the results when the model fits. 
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Model does not fit (Run 1): The ranking of the estimators (from highest RE  to 

lowest RE ) is as follows: ˆ
dd CALUY , ˆ

dPEBLUPY , ˆ
dEBLUPY , ˆ

d REGY , ˆ
dSYNY , and 

ˆ
d CALUY . The traditional domain estimator ˆ

dd CALUY  is doing the best, but it is 

closely followed by the two small area estimators ˆdPEBLUPY  and ˆdEBLUPY . As the 

sample size increases, there is a dichotomy in terms of RE . The relative efficiency 

increases for ˆ
dd CALUY  and ˆdPEBLUPY , whereas it decreases for ˆd REGY , ˆdSYNY , and 

ˆ
dEBLUPY  . There is no change to ˆd CALUY  as the auxiliary information is not useful 

at the domain level. 

Model fits (Run 2): The ranking of the estimators (from highest RE  to lowest 

RE ) has changed with respect to run 1. It is now ˆdEBLUPY , ˆdPEBLUPY , ˆ
dSYNY , 

ˆ
d REGY , ˆ

dd CALUY , and ˆ
d CALUY . The small area estimators are clearly more 

efficient than the traditional estimators. The relative efficiency increased for all 

estimators - maximum is now 14 versus 8 obtained in run 1. Once more, as the 

sample size increases, there is a dichotomy in terms of RE . 

Another way to summarize the behaviour of the various estimators is graphically. 

We summarized the average absolute relative bias, ˆ( )d ESTARB Y , and the average 

coefficient of variation, ˆ( )d ESTCV Y , within each domain 1,2, , ,d D  where  

D = 29.  

Figures 2a and 2b display two typical graphs of the absolute relative bias over the 

domains for the two simulation runs. These graphs show the results for the sample 

size of 464. Similar results were obtained for the other sample sizes. We can see 

that the absolute relative bias of ˆd SYNY , ˆd EBLUPY  and ˆd PEBLUPY  is greatly reduced 

when we specify the ‘correct’ auxiliary variables in the underlying model. In the 

first run, the small area estimators show a ‘drop’ and a ‘rise’ between the groups 

of domains. This can be explained. The overall model fitted using (1, )i j i jxx  

produces a regression which is close to the underlying model for the second group 

of domains. Therefore, the differences are small for the second group of domains. 

However, this overall model is quite different from the one used to generate the 

population in the first and third groups of domains. 
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Model does not fit 

 

Legend: ˆ
d HTY :     ˆd REGY :          ˆ

dd CALUY :  ˆ
dCALUY :  

     ˆd SYNY :     ˆd EBLUPY :        ˆd PEBLUPY :  

Figure 2a. Plots of the absolute relative bias of the estimators for sample size 464 

 

Model fits 

Legend: ˆ
d HTY :     ˆd REGY :          ˆ

dd CALUY :  ˆ
dCALUY :  

    ˆd SYNY :     ˆd EBLUPY :        ˆd PEBLUPY :  

Figure 2b. Plots of the absolute relative bias of the estimators for sample size 464 

Figures 3a and 3b display the coefficient of variation associated with the 

estimators. The coefficient of variation is reduced for all estimators except the HT 

estimator ˆ
d HTY  (which does not use any auxiliary information) and ˆ

dd CALUY  

(because the auxiliary variables for this estimator are equivalent in the two runs). 

ARB 

ARB 
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Model does not fit

 

Legend: ˆ
d HTY :     ˆd REGY :          ˆ

dd CALUY :  ˆ
dCALUY :  

    ˆd SYNY :     ˆd EBLUPY :         ˆd PEBLUPY :  

Figure 3a. Plots of the Coefficient of Variation of the Estimators for sample  

                    size 464 

Model fits 

Legend: ˆ
d HTY :     ˆd REGY :          ˆ

dd CALUY :  ˆ
dCALUY :  

    ˆd SYNY :     ˆd EBLUPY :       ˆd PEBLUPY :  

Figure 2b. Plots of the Coefficient of Variation of the Estimators for sample  

                    size 464 

CV 

CV 



150                                     M. A. Hidiroglou, V. M. Estevao: A Comparison of small .... 

 

 

Figures 4a and 4b show a graphical display of the results for the average 

coefficient of variation ˆ( )ESTCV Y  results given in Table 6. Under run 2, we see 

that ˆd SYNY , ˆd EBLUPY  and ˆd PEBLUPY  have the smallest ˆ( )ESTCV Y . All three lines 

are indistinguishable as they are very close together. Under run 2, we see that 
ˆ
d SYNY , ˆd EBLUPY  and ˆd PEBLUPY  have the smallest ˆ( )ESTCV Y . All three lines are 

indistinguishable as they are very close together. 

Model does not fit 

 
 

Figure 4a. Plots of the average coefficient of variation of the estimators by sample  

                  size 

Model fits 

 
 

Figure 4b. Plots of the average coefficient of variation of the estimators by sample  

                  size  

CV  

 

CV  
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Figures 5a and 5b show a graphical display of the average relative efficiency 

of the estimators given in table 7. Under run 2, we note that ˆd EBLUPY  and ˆd PEBLUPY  

have the highest ˆ( )ESTRE Y  over the various sample sizes. 

 

Model does not fit 

  
Figure 5a. Plots of the average relative efficiency of the estimators by sample size 

 

 
Model fits 

  
Figure 5b. Plots of the average relative efficiency of the estimators by sample size 

  

RE

RE
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4. Conclusions 

We compared via simulation the behavior of a number of traditional domain 

and small area estimators. The sampling design used in the simulation, simple 

random sampling without replacement, is a simplification of the sampling design 

commonly used for business surveys (stratified simple random sampling without 

replacement). The estimators using the auxiliary data either reflected the model 

used to generate the population (model fits) or did not (model does not fit). The 

simulation design did not use unequal probability sampling. The additional 

complexity of using unequal probability sampling is that we would have had to 

modify our model-based small area estimators to account for possible informative 

sampling. However, since we used simple random sampling without replacement, 

we did not have to account for this problem. 

The conclusions of our simulation are as follows. Comparing the efficiency 

between the traditional and small area estimators, the results very much depend 

on whether the model holds or not. The calibration estimator ˆd CALUY  which only 

uses auxiliary data at the population level is not efficient at the domain level 

whether the model holds or not. This is in contrast to ˆ
dd CALUY  that uses auxiliary 

data at the domain level. The estimator ˆ
dd CALUY  is the best traditional estimator 

to use when the model holds. Its average relative efficiency increases as the overall 

sample size increases. Its weakness is in the smaller domains, where the expected 

sample size is smaller than three units, as it cannot be defined when the auxiliary 

data consists of two auxiliary variables; in general, when there are p  auxiliary 

variables, we are not be able to define ˆ
dd CALUY  when the sample size is smaller 

than p+1 auxiliary variables. When the model does not hold, ˆd REGY  is the best 

traditional estimator to use. However, it is outperformed by the small area 

estimators ˆ
d SYNY , ˆd EBLUPY  and ˆd PEBLUPY . The small area estimator ˆd EBLUPY  is the 

most efficient one when the model holds, although it is closely followed by ˆd SYNY  

and ˆd PEBLUPY . When the model does not hold, the ˆd PEBLUPY  estimator is the most 

efficient small area estimator; an explanation for this is that it is design-consistent. 

 

 

 

 



STATISTICS IN TRANSITION new series and SURVEY METHODOLOGY               153 

 

Acknowledgement 

We would like to thank the referee for his constructive comments that 

substantially improved this paper. 

REFERENCES 

BATTESE, G. E., HARTER, R. M., FULLER, W. A., (1988). An error-

component model for prediction of county crop areas using survey and 

satellite data. Journal of the American Statistical Association, 83 (401),  

28–36.  

DATTA, G. S., (2009). Model-based approach to small area estimation. 

Handbook of Statistics, 29, 251–288. 

DEVILLE, J. C., SÄRNDAL, C. E., (1992). Calibration estimation in survey 

sampling. Journal of the American Statistical Association, 87(418), 376–382. 

ESTEVAO, V., HIDIROGLOU, M. A., YOU, Y., (2014). Methodology Software 

Library - Small area Estimation Methodology Specifications for Area and Unit 

Level based Models. Technical Report, Statistics Canada. 

FAY, R. E., HERRIOT, R. A., (1979). Estimation of income for small places: an 

application of James-Stein procedures to census data. Journal of the American 

Statistical Association, 74 (366A), 269–277. 

LEHTONEN, R., VEIJANEN, A., (2009). Design-based methods of estimation 

for domains and small areas. Handbook of statistics, 29, 219–249. 

PFEFFERMANN, D., (2013). New important developments in small area 

estimation. Statistical Science, 28(1), 40–68. 

PFEFFERMANN, D., SVERCHKOV, M., (2007). Small Area Estimation Under 

Informative Probability Sampling of Areas and Within the Selected Areas. 

Journal of the American Statistical Association 102 (480), 1427–1439. 

RAO, J. N. K., (2003). Small Area Estimation: John Wiley & Sons.  

SINGH, A. C., MIAN, I. U. H., (1995). Generalized Sample Size Dependent 

Estimators for Small Areas, Proceedings of the 1995 Annual Research 

Conference, U.S. Bureau of the Census, Washington, DC,  687–701. 

SINGH, M. P., GAMBINO, J., MANTEL, H., (1994).  Issues and Strategies for 

Small Area Data. Survey Methodology, 20 (1), 3–22. 

WOODRUFF, R. S., (1966). Use of a Regression Technique to Produce Area 

Breakdowns of the Monthly National Estimates of Retail Trade. Journal of 

the American Statistical Association, 61 (314), 496–504. 



154                                     M. A. Hidiroglou, V. M. Estevao: A Comparison of small .... 

 

 

YOU, Y., RAO, J. N. K., (2002). A pseudo-empirical best linear unbiased 

prediction approach to small area estimation using survey weights, Canadian 

Journal of Statistics, 30, 431–439.  

VERRET, F., RAO, J. N. K., VERRET, F., RAO, J. N. K., HIDIROGLOU, M. A., 

(2015). Model-based small area estimation under informative sampling. To 

appear in the December 2015 issue of Survey Methodology.  

 

 



STATISTICS IN TRANSITION new series and SURVEY METHODOLOGY 

 

155 

STATISTICS IN TRANSITION new series and SURVEY METHODOLOGY 

Joint Issue: Small Area Estimation 2014 

Vol. 17, No. 1, pp. 155–158 

ABOUT THE AUTHORS 

Breidt, Jay is a Professor in the Department of Statistics, Colorado State 

University.  He is a Fellow of the American Statistical Association, a Fellow of 

the Institute of Mathematical Statistics, and an elected member of the 

International Statistical Institute.  His research interests include time series, 

nonparametric regression, environmental statistics, and design and estimation for 

complex surveys. 

 

Burgard, Jan Pablo is an Assistant Professor of Statistics at the Economics 

Department of Trier University and a Principal Investigator at the ALOP research 

training group focusing on numerical optimization. His main research interests lie 

in small area estimation, survey design, and computational statistics, with focus 

on statistical modelling, multivariate statistics, and Monte Carlo methods. The 

main fields of application are register-based censuses, poverty indicators, the 

estimation of regional morbidity figures, and the measurement of biodiversity. 

 

Chakraborty, Adrijo is a Statistician at NORC at the University of Chicago. He 

received his PhD in statistics from the University of Georgia in 2014. His 

research interests include small area estimation, Bayesian statistics, survey 

sampling, and public health. 

 

Datta, Gauri Sankar is a Professor of Statistics at the University of Georgia and 

a Mathematical Statistician at the U.S. Census Bureau. Dr. Datta's research 

interests include small area estimation, Bayesian methods with applications to 

syndromic surveillance and the neuro-image analysis of fMRI data. He has 

published his methodological and applied research extensively in the leading 

journals of statistics. He is an elected fellow of the American Statistical 

Association and the Institute of Mathematical Statistics. 

 

Erciulescu, Andreea is a Research Associate at the National Institute of 

Statistical Sciences (NISS), working on projects conducted by USDA National 

Agricultural Statistics Services (NASS). Erciulescu earned her Ph.D. in Statistics 

from the Department of Statistics, at Iowa State University. Her research interests 

include small area estimation, mixed models, resampling techniques, 

computational statistics, and survey statistics. 



156                                                                                                           About the Authors 

 

 

Fuller, Wayne A. is Emeritus Distinguished Professor in Statistics and 

Economics at Iowa State University. He has published in more than twenty 

journals and is the author of the texts Introduction to Statistical Time Series, 

Measurement Error Models, and Sampling Statistics. As a member of the Survey 

Group at Iowa State University, he had primary responsibility for developing 

estimation procedures for a large longitudinal national survey called the U.S. 

National Resources Inventory. His research interests in survey sampling include 

regression estimation, small area estimation, imputation, and multiple phase 

sampling. His research in time series concentrated on autoregressive processes, 

particularly those with a unit root. 

 

Gabler, Siegfried is Team Leader of Statistics at GESIS - Leibniz-Institute for 

the Social Sciences. He is an elected member of the International Statistical 

Institute and member of the Sampling Expert Panel of the European Social 

Survey. He teaches as Privatdozent at the University of Mannheim. His research 

area covers sampling designs, especially for telephone surveys and cross-cultural 

surveys, weighting, design effects, and decision theoretic justification of sampling 

strategies. 

 

Ganninger, Matthias is Senior Data Scientist at Roche Diagnostics. He received 

his PhD in statistics from the University of Trier in 2009. While working for 

GESIS - Leibniz-Institute for the Social Sciences he specialized in design effects 

and variance estimation. During his postdoctoral years, he focused on small area 

estimation, computational statistics, and Monte-Carlo simulation techniques. In 

2013, he joined Elsevier Health Analytics where he specialized on modelling 

health insurance claims data. Since early 2015, Matthias Ganninger has been 

building data science capabilities at Roche Diagnostics on a global level. 

 

Guadarrama, Maria is a PhD student at the Department of Statistics, Carlos III 

University of Madrid. Her main research domain is small area estimation under 

complex sampling designs. She is also interested in the estimation of general 

parameters in small areas, panel data analysis, and Bayesian statistics. 

 

Hernandez-Stumpfhauser, Daniel is a Postdoctoral Research Associate at the 

Department of Biostatistics at the University of North Carolina at Chapel Hill, 

NC, USA. He has a PhD in Statistics from Colorado State University. His 

research interests include scalable Bayesian inference, variational Bayes, 

directional statistics, and Bayesian analysis of survey data. 

 



STATISTICS IN TRANSITION new series and SURVEY METHODOLOGY 

 

157 

Hidiroglou, Michael A. was Director of the Statistical Research and 

Methodology Division at Statistics Canada at the time that this article was written. 

He is currently Senior Research Advisor at the Business Survey Methods Division 

at Statistics Canada. Dr. Hidiroglou is a Fellow of the American Statistical 

Association and an elected member of the International Statistical Institute. His 

research interests are in the areas of sampling, data collection, and small area 

estimation. 

 

Kolb, Jan-Philipp is Senior Statistician at GESIS - Leibniz-Institute for the 

Social Sciences. He received his PhD in statistics from the University of Trier in 

2012. While working at the chair for economic and social statistics at the 

University of Trier he specialized in data analysis and the generation of synthetic 

universes as a basis for simulation. During his postdoctoral years, he focused on 

computational statistics, integration of geodata, and Monte-Carlo simulation 

techniques. 

 

Kordos, Jan graduated from the Jagiellonian University and the University of 

Wroclaw (in mathematical statistics, 1955); PhD in Econometrics from the 

Academy of Economics, Katowice, Poland (1965), and Professorship (1990). He 

worked as the Chief of the Methodology Section at the Division of Living 

Conditions, Central Statistical Office/CSO (1955-1966) and of the Laboratory of 

Mathematical Methods at the Research Center of Statistics and Economics (CSO, 

1966-74). He served as the FAO Adviser in Agricultural Statistics in Ethiopia 

(1974-80). He acted as Director of the Division Demographic and Social Surveys 

(1981-92) and as Vice President of the CSO Poland (1992-96). He was lecturing 

and training on agricultural Statistics in China in the late 1980s, and also in 

Kathmandu, Nepal (1991). During 1994-96 he served as the World Bank 

Consultant in Household Budget Surveys in Latvia and Lithuania. He was 

President of the Polish Statistical Association (1985-94). He was founder and 

editor-in-chief of Statistics in Transition (1993-2007). Now, he is Professor of 

Statistics at the Warsaw Management University and Adviser to the President of 

CSO. His publications include four books and over three hundreds articles and 

other papers. He is an elected member of the International Statistical Institute 

since 1974. 

 

Mandal, Abhyuday is an Associate Professor in the Department of Statistics of 

the University of Georgia, USA. He received his Ph.D. from the Georgia Institute 

of Technology in 2005. His research interests include small area estimation and 

design of experiments. 



158                                                                                                           About the Authors 

 

 

Molina, Isabel is an Associate Professor at the Department of Statistics, Carlos 

III University of Madrid. She is an elected member of the International Statistical 

Institute. She has published over 30 research papers including several book 

chapters and coauthored the Wiley book “Small area estimation, second edition”. 

Her research interests include small area estimation, mixed models, robust 

methods, and resampling techniques (bootstrap). 

 

Münnich, Ralf is a Full Professor and the Head of the Economic and Social 

Statistics research group at Trier University. He has led several large-scale 

European research projects and the German Census 2011 sampling and estimation 

project. Currently, he is heading the RIFOSS research initiative and is a principal 

investigator in the ALOP research training group focusing on discrete 

optimization in survey statistics. Ralf Münnich is an elected member of the 

International Statistical Institute, Member of the Board of the German Statistical 

Society, and editor-in-chief of AStA Wirtschafts- und Sozialstatistisches Archiv. 

His main research interests focus on survey sampling, variance estimation, small 

area estimation, and Monte-Carlo and microsimulation methods. 

 

Opsomer, Jean D. is Professor and Chair in the Department of Statistics, 

Colorado State University.  He is a Fellow of the American Statistical Association 

and the Institute of Mathematical Statistics, and is an elected member of the 

International Statistical Institute.  His main research interests are survey statistics, 

nonparametric methods, and environmental statistics. 

 

Rao, J. N. K. is a Distinguished Research Professor in the School of Mathematics 

and Statistics, Carleton University, Ottawa, Canada. He is also a consultant to 

Statistics Canada on sample survey methodology. His main research interests are 

in survey sampling theory and methods. He has published numerous research 

papers as well as the widely cited book “Small Area Estimation” (Wiley 2003) 

and a second edition of this book jointly with Isabel Molina (Wiley 2015). He is 

an editorial advisor for the Wiley series in Survey Methodology, and currently sits 

on the editorial board of the Survey Methodology journal. He has served on the 

Advisory Committee for Statistical Methodology of Statistics Canada since 1985. 

The professional honours he has received include Honorary Doctorates from the 

University of Waterloo, Canada (2008) and Catholic University of the Sacred 

Heart, Italy (2013), Waksberg Award for Survey Methodology (2005) and 1993 

Gold Medal of the Statistical Society of Canada in recognition of “fundamental 

research achievements in the theory and practice of surveys”. He is a Fellow of 

the Royal Society of Canada, American Statistical Association and Institute of 

Mathematical Statistics. He delivered the prestigious Annual Morris Hansen 

Lecture in 1998. 



 

 

E R R A T U M 

In the previous joint issue of the Statistics in Transition new series and Survey 
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mistakenly was given his affiliation (“University of Jyväskylä”). The proper 

information should read as follows: Risto Lehtonen, University of Helsinki.  

We apologize to Professor Risto Lehtonen and to the readers for this mistake. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 




